5,532 research outputs found

    Quantum information as a non-Kolmogorovian generalization of Shannon's theory

    Get PDF
    In this article we discuss the formal structure of a generalized information theory based on the extension of the probability calculus of Kolmogorov to a (possibly) non-commutative setting. By studying this framework, we argue that quantum information can be considered as a particular case of a huge family of non-commutative extensions of its classical counterpart. In any conceivable information theory, the possibility of dealing with different kinds of information measures plays a key role. Here, we generalize a notion of state spectrum, allowing us to introduce a majorization relation and a new family of generalized entropic measures

    Standard Model Physics in ATLAS at the start of the LHC

    Get PDF
    The upcoming start of the LHC will provide the unprecedented possibility to explore TeV scale physics. Before make any measurement it will be of course necessary a good understanding and calibration of the detector. In this talk a description of main analysis possible at the start of LHC within Standard Model physics is given, with particular attention on ``standard candles'' processes and inclusive cross section measurements

    Prospects for Electroweak Physics at LHC

    Get PDF
    This note describes main electroweak physics measurements at LHC with ATLAS and CMS detectors. W and Z boson analysis on early data are summarize together with prospects for high statistics measurements, like di-boson productions and Z forward-backward asymmetry studies

    Unified entropic measures of quantum correlations induced by local measurements

    Get PDF
    We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlations measures based on non-additive entropies when an uncorrelated ancilla is appended to the system without changing the computability of our entropic correlations measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlations measures based on von Neumann and R\'enyi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some relations between them. Finally, we obtain analytical expressions of the entropic correlations measures for typical quantum bipartite systems.Comment: 10 pages, 1 figur

    Quantum synchronization as a local signature of super- and subradiance

    Get PDF
    We study the relationship between the collective phenomena of super and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of long standing coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occur on the same time scale. This reciprocity is broken in the presence of dephasing noise.Comment: 12 pages, 6 figure

    Dispersion of Klauder's temporally stable coherent states for the hydrogen atom

    Full text link
    We study the dispersion of the "temporally stable" coherent states for the hydrogen atom introduced by Klauder. These are states which under temporal evolution by the hydrogen atom Hamiltonian retain their coherence properties. We show that in the hydrogen atom such wave packets do not move quasi-classically; i.e., they do not follow with no or little dispersion the Keplerian orbits of the classical electron. The poor quantum-classical correspondence does not improve in the semiclassical limit.Comment: 6 pages, 2 figure

    Classical Evolution of Quantum Elliptic States

    Get PDF
    The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with astonishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydrogenic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical perturbation theory yields the {\it exact} evolution in time of these quantum states, and so we explain the surprising match between purely classical perturbative calculations and experiments. Finally, as a first application, we propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates which have maximum total angular momentum and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.

    Approximate transformations of bipartite pure-state entanglement from the majorization lattice

    Full text link
    We study the problem of deterministic transformations of an \textit{initial} pure entangled quantum state, ψ|\psi\rangle, into a \textit{target} pure entangled quantum state, ϕ|\phi\rangle, by using \textit{local operations and classical communication} (LOCC). A celebrated result of Nielsen [Phys. Rev. Lett. \textbf{83}, 436 (1999)] gives the necessary and sufficient condition that makes this entanglement transformation process possible. Indeed, this process can be achieved if and only if the majorization relation ψϕ\psi \prec \phi holds, where ψ\psi and ϕ\phi are probability vectors obtained by taking the squares of the Schmidt coefficients of the initial and target states, respectively. In general, this condition is not fulfilled. However, one can look for an \textit{approximate} entanglement transformation. Vidal \textit{et. al} [Phys. Rev. A \textbf{62}, 012304 (2000)] have proposed a deterministic transformation using LOCC in order to obtain a target state χopt|\chi^\mathrm{opt}\rangle most approximate to ϕ|\phi\rangle in terms of maximal fidelity between them. Here, we show a strategy to deal with approximate entanglement transformations based on the properties of the \textit{majorization lattice}. More precisely, we propose as approximate target state one whose Schmidt coefficients are given by the supremum between ψ\psi and ϕ\phi. Our proposal is inspired on the observation that fidelity does not respect the majorization relation in general. Remarkably enough, we find that for some particular interesting cases, like two-qubit pure states or the entanglement concentration protocol, both proposals are coincident.Comment: Revised manuscript close to the accepted version in Physica A (10 pages, 1 figure

    Dynamics of Entanglement and Bell-nonlocality for Two Stochastic Qubits with Dipole-Dipole Interaction

    Full text link
    We have studied the analytical dynamics of Bell nonlocality as measured by CHSH inequality and entanglement as measured by concurrence for two noisy qubits that have dipole-dipole interaction. The nonlocal entanglement created by the dipole-dipole interaction is found to be protected from sudden death for certain initial states

    Revival of quantum correlations without system-environment back-action

    Get PDF
    Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and reviving entanglement. It is important to know how the absence of back-action, or modelling an environment as classical, affects the kind of system time evolutions one is able to describe. We find a class of global time evolutions where back-action is absent and for which there is no loss of generality in modelling the environment as classical. Finally, we show that the revivals can be connected with the increase of a parameter used to quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.
    corecore