16,436 research outputs found

    The density profile of equilibrium and non-equilibrium dark matter halos

    Get PDF
    We study the diversity of the density profiles of dark matter halos based on a large set of high-resolution cosmological simulations of 256^3 particles. The cosmological models include four scale-free models and three representative cold dark matter models. The simulations have good force resolution, and there are about 400 massive halos with more than 10^4 particles within the virial radius in each cosmological model. Our unbiased selection of all massive halos enables to quantify how well the bulk of dark matter halos can be described by the Navarro, Frenk & White (NFW) profile which was established for equilibrium halos. We find that about seventy percent of the halos can be fitted by the NFW profile with a fitting residual dvi_{max} less than 30% in Omega_0=1 universes. This percentage is higher in lower density cosmological models. The rest of the halos exhibits larger deviations from the NFW profile for more significant internal substructures. There is a considerable amount of variation in the density profile even for the halos which can be fitted by the NFW profile (i.e. dvi_{max}<0.30). The distribution of the profile parameter, the concentration cc, can be well described by a lognormal function with the mean value \bar c slightly smaller (15%) than the NFW result and the dispersion \sigma_c in \ln c about 0.25. The more virialized halos with dvi_{max}<0.15 have the mean value \bar c in good agreement with the NFW result and a slightly smaller dispersion \sigma_c (about 0.2). Our results can alleviate some of the conflicts found recently between the theoretical NFW profile and observational results. Implications for theoretical and observational studies of galaxy formation are discussed.Comment: The final version accepted for publication in ApJ; one figure and one paragraph added to demonstrate that all the conclusions of the first version are solid to the resoltuion effects; 19 pages with 6 figure

    Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation

    Full text link
    Using a two-dimensional finite-differences scheme to model spin transport in silicon devices with lateral geometry, we simulate the effects of spin relaxation at interfacial boundaries, i.e. the exposed top surface and at an electrostatically-controlled backgate with SiO_2 dielectric. These gate-voltage-dependent simulations are compared to previous experimental results and show that strong spin relaxation due to extrinsic effects yield an Si/SiO_2 interfacial spin lifetime of ~ 1ns, orders of magnitude lower than lifetimes in the bulk Si, whereas relaxation at the top surface plays no substantial role. Hall effect measurements on ballistically injected electrons gated in the transport channel yield the carrier mobility directly and suggest that this reduction in spin lifetime is only partially due to enhanced interfacial momentum scattering which induces random spin flips as in the Elliott effect. Therefore, other extrinsic mechanisms such as those caused by paramagnetic defects should also be considered in order to explain the dramatic enhancement in spin relaxation at the gate interface over bulk values

    Eigenstates of Paraparticle Creation Operators

    Get PDF
    Eigenstates of the parabose and parafermi creation operators are constructed. In the Dirac contour representation, the parabose eigenstates correspond to the dual vectors of the parabose coherent states. In order p=2p=2, conserved-charge parabose creation operator eigenstates are also constructed. The contour forms of the associated resolutions of unity are obtained.Comment: 14 pages, LaTex file, no macros, no figure

    Is the Number of Giant Arcs in LCDM Consistent With Observations?

    Full text link
    We use high-resolution N-body simulations to study the galaxy-cluster cross-sections and the abundance of giant arcs in the Λ\LambdaCDM model. Clusters are selected from the simulations using the friends-of-friends method, and their cross-sections for forming giant arcs are analyzed. The background sources are assumed to follow a uniform ellipticity distribution from 0 to 0.5 and to have an area identical to a circular source with diameter 1\arcsec. We find that the optical depth scales as the source redshift approximately as \tau_{1''} = 2.25 \times 10^{-6}/[1+(\zs/3.14)^{-3.42}] (0.6<\zs<7). The amplitude is about 50% higher for an effective source diameter of 0.5\arcsec. The optimal lens redshift for giant arcs with the length-to-width ratio (L/WL/W) larger than 10 increases from 0.3 for \zs=1, to 0.5 for \zs=2, and to 0.7-0.8 for \zs>3. The optical depth is sensitive to the source redshift, in qualitative agreement with Wambsganss et al. (2004). However, our overall optical depth appears to be only ∼\sim 10% to 70% of those from previous studies. The differences can be mostly explained by different power spectrum normalizations (σ8\sigma_8) used and different ways of determining the L/WL/W ratio. Finite source size and ellipticity have modest effects on the optical depth. We also found that the number of highly magnified (with magnification ∣μ∣>10|\mu|>10) and ``undistorted'' images (with L/W<3L/W<3) is comparable to the number of giant arcs with ∣μ∣>10|\mu|>10 and L/W>10L/W>10. We conclude that our predicted rate of giant arcs may be lower than the observed rate, although the precise `discrepancy' is still unclear due to uncertainties both in theory and observations.Comment: Revised version after the referee's reports (32 pages,13figures). The paper has been significantly revised with many additions. The new version includes more detailed comparisons with previous studies, including the effects of source size and ellipticity. New discussions about the redshift distribution of lensing clusters and the width of giant arcs have been adde

    Dynamic microscopic structures and dielectric response in the cubic-to-tetragonal phase transition for BaTiO3 studied by first-principles molecular dynamics simulation

    Full text link
    The dynamic structures of the cubic and tetragonal phase in BaTiO3 and its dielectric response above the cubic-to-tetragonal phase transition temperature (Tp) are studied by first-principles molecular dynamics (MD) simulation. It's shown that the phase transition is due to the condensation of one of the transverse correlations. Calculation of the phonon properties for both the cubic and tetragonal phase shows a saturation of the soft mode frequency near 60 cm-1 near Tp and advocates its order-disorder nature. Our first-principles calculation leads directly to a two modes feature of the dielectric function above Tp [Phys. Rev. B 28, 6097 (1983)], which well explains the long time controversies between experiments and theories

    The Power Spectrum, Bias Evolution, and the Spatial Three-Point Correlation Function

    Full text link
    We calculate perturbatively the normalized spatial skewness, S3S_3, and full three-point correlation function (3PCF), ζ\zeta, induced by gravitational instability of Gaussian primordial fluctuations for a biased tracer-mass distribution in flat and open cold-dark-matter (CDM) models. We take into account the dependence on the shape and evolution of the CDM power spectrum, and allow the bias to be nonlinear and/or evolving in time, using an extension of Fry's (1996) bias-evolution model. We derive a scale-dependent, leading-order correction to the standard perturbative expression for S3S_3 in the case of nonlinear biasing, as defined for the unsmoothed galaxy and dark-matter fields, and find that this correction becomes large when probing positive effective power-spectrum indices. This term implies that the inferred nonlinear-bias parameter, as usually defined in terms of the smoothed density fields, might depend on the chosen smoothing scale. In general, we find that the dependence of S3S_3 on the biasing scheme can substantially outweigh that on the adopted cosmology. We demonstrate that the normalized 3PCF, QQ, is an ill-behaved quantity, and instead investigate QVQ_V, the variance-normalized 3PCF. The configuration dependence of QVQ_V shows similarly strong sensitivities to the bias scheme as S3S_3, but also exhibits significant dependence on the form of the CDM power spectrum. Though the degeneracy of S3S_3 with respect to the cosmological parameters and constant linear- and nonlinear-bias parameters can be broken by the full configuration dependence of QVQ_V, neither statistic can distinguish well between evolving and non-evolving bias scenarios. We show that this can be resolved, in principle, by considering the redshift dependence of ζ\zeta.Comment: 41 pages, including 12 Figures. To appear in The Astrophysical Journal, Vol. 521, #
    • …
    corecore