19,069 research outputs found

    New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects

    Full text link
    We present a general relativistic description of galaxy clustering in a FLRW universe. The observed redshift and position of galaxies are affected by the matter fluctuations and the gravity waves between the source galaxies and the observer, and the volume element constructed by using the observables differs from the physical volume occupied by the observed galaxies. Therefore, the observed galaxy fluctuation field contains additional contributions arising from the distortion in observable quantities and these include tensor contributions as well as numerous scalar contributions. We generalize the linear bias approximation to relate the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. Our full formalism is essential for the consistency of theoretical predictions. As our first application, we compute the angular auto correlation of large-scale structure and its cross correlation with CMB temperature anisotropies. We comment on the possibility of detecting primordial gravity waves using galaxy clustering and discuss further applications of our formalism.Comment: 10 pages, 2 figures, accepted for publication in Physical Review

    Quasinormal Ringing for Acoustic Black Holes at Low Temperature

    Full text link
    We investigate a condensed matter ``black hole'' analogue, taking the Gross-Pitaevskii (GP) equation as a starting point. The linearized GP equation corresponds to a wave equation on a black hole background, giving quasinormal modes under some appropriate conditions. We suggest that we can know the detailed characters and corresponding geometrical information about the acoustic black hole by observing quasinormal ringdown waves in the low temperature condensed matters.Comment: 9 pages, 3 figures, PRD accepted versio

    Electroweak phase transition in a nonminimal supersymmetric model

    Full text link
    The Higgs potential of the minimal nonminimal supersymmetric standard model (MNMSSM) is investigated within the context of electroweak phase transition. We investigate the allowed parameter space yielding correct electroweak phase transitoin employing a high temperature approximation. We devote to phenomenological consequences for the Higgs sector of the MNMSSM for electron-positron colliders. It is observed that a future e+ee^+ e^- linear collider with s=1000\sqrt{s} = 1000 GeV will be able to test the model with regard to electroweak baryogenesis.Comment: 28 pages, 5 tables, 12 figure

    The Most Massive Black Holes in the Universe: Effects of Mergers in Massive Galaxy Clusters

    Get PDF
    Recent observations support the idea that nuclear black holes grew by gas accretion while shining as luminous quasars at high redshift, and they establish a relation of the black hole mass with the host galaxy's spheroidal stellar system. We develop an analytic model to calculate the expected impact of mergers on the masses of black holes in massive clusters of galaxies. We use the extended Press-Schechter formalism to generate Monte Carlo merger histories of halos with a mass 10^{15} h^{-1} Msun. We assume that the black hole mass function at z=2 is similar to that inferred from observations at z=0 (since quasar activity declines markedly at z<2), and we assign black holes to the progenitor halos assuming a monotonic relation between halo mass and black hole mass. We follow the dynamical evolution of subhalos within larger halos, allowing for tidal stripping, the loss of orbital energy by dynamical friction, and random orbital perturbations in gravitational encounters with subhalos, and we assume that mergers of subhalos are followed by mergers of their central black holes. Our analytic model reproduces numerical estimates of the subhalo mass function. We find that the most massive black holes in massive clusters typically grow by a factor ~ 2 by mergers after gas accretion has stopped. In our ten realizations of 10^{15} h^{-1} Msun clusters, the highest initial (z=2) black hole masses are 5-7 x 10^9 Msun, but four of the clusters contain black holes in the range 1-1.5 x 10^{10} Msun at z=0. Satellite galaxies may host black holes whose mass is comparable to, or even greater than, that of the central galaxy. Thus, black hole mergers can significantly extend the very high end of the black hole mass function.Comment: 13 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Control of carbon nanotube morphology by change of applied bias field during growth

    Get PDF
    Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone (~200 nm dia.) with a small diameter nanotube (~7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy

    Quantum phase interference (Berry phase) in single-molecule magnets of Mn12

    Full text link
    Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Mn12 is therefore the second molecular clusters presenting quantum phase interference.Comment: 3 pages, 4 figures, MMM'01 conference (12-16 Nov.
    corecore