47 research outputs found

    Impact of PI3K (Phosphoinositide 3-Kinase Alpha) Inhibition on Hemostasis and Thrombosis

    Get PDF
    Objective— PI3Kα (phosphoinositide 3-kinase alpha) is a therapeutic target in oncology, but its role in platelets and thrombosis remains ill characterized. In this study, we have analyzed the role of PI3Kα in vitro, ex vivo, and in vivo in 2 models of arterial thrombosis. Approach and Results— Using mice selectively deficient in p110α in the megakaryocyte lineage and isoform-selective inhibitors, we confirm that PI3Kα is not mandatory but participates to thrombus growth over a collagen matrix at arterial shear rate. Our data uncover a role for PI3Kα in low-level activation of the GP (glycoprotein) VI-collagen receptor by contributing to ADP secretion and in turn full activation of PI3Kβ and Akt/PKB (protein kinase B). This effect was no longer observed at high level of GP VI agonist concentration. Our study also reveals that over a vWF (von Willebrand factor) matrix, PI3Kα regulates platelet stationary adhesion contacts under arterial flow through its involvement in the outside-in signaling of vWF-engaged αIIbβ3 integrin. In vivo, absence or inhibition of PI3Kα resulted in a modest but significant decrease in thrombus size after superficial injuries of mouse mesenteric arteries and an increased time to arterial occlusion after carotid lesion, without modification in the tail bleeding time. Considering the more discrete and nonredundant role of PI3Kα compared with PI3Kβ, selective PI3Kα inhibitors are unlikely to increase the bleeding risk at least in the absence of combination with antiplatelet drugs or thrombopenia. Conclusions— This study provides mechanistic insight into the role of PI3Kα in platelet activation and arterial thrombosis

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    Expression of myotubularins in blood platelets: Characterization and potential diagnostic of X-linked myotubular myopathy

    No full text
    International audiencePhosphoinositides play a key role in the spatiotemporal control of central intracellular processes and several specific kinases and phosphatases regulating the level of these lipids are implicated in human diseases. Myotubularins are a family of 3-phosphatases acting specifically on phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5 bisphosphate. Members of this family are mutated in genetic diseases including myotubularin 1 (MTM1) and myotubularin-related protein 2 (MTMR2) which mutations are responsible of X-linked centronuclear myopathy and Charcot-Marie-Tooth neuropathy, respectively. Here we show that MTM1 is expressed in blood platelets and that hundred microliters of blood is sufficient to detect the protein by western blotting. Since the most severe cases of pathogenic mutations of MTM1 lead to loss of expression of the protein, we propose that a minimal amount of blood can allow a rapid diagnostic test of X-linked myotubular myopathy, which is currently based on histopathology of muscle biopsy and molecular genetic testing. In platelets, MTM1 is a highly active 3-phosphatase mainly associated to membranes and found on the dense granules and to a lesser extent on alpha-granules. However, deletion of MTM1 in mouse had no significant effect on platelet count and on platelet secretion and aggregation induced by thrombin or collagen stimulation. Potential compensation by other members of the myotubularin family is conceivable since MTMR2 was easily detectable by western blotting and the mRNA of several members of the family increased during in vitro differentiation of human megakaryocytes and MEG-01 cells. In conclusion, we show the presence of several myotubularins in platelets and propose that minimal amounts of blood can be used to develop a rapid diagnostic test for genetic pathologies linked to loss of expression of these phosphatases

    PI3KC2β inactivation stabilizes VE‐cadherin junctions and preserves vascular integrity

    No full text
    Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3‐kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2β) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2β in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2β showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2β in human cerebral microvascular endothelial cells stabilized homotypic cell–cell junctions by increasing Rab11‐dependent VE‐cadherin recycling. These results identify PI3KC2β as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke
    corecore