1,163 research outputs found

    Development of visual evoked responses to tritan,red-green and luminance stimuli in human infants

    Get PDF
    The principal aim of this work was to investigate the development of the S-cone colour-opponent pathway in human infants aged 4 weeks to 6 months. This was achieved by recording transient visual evoked responses to pattern-onset stimuli along a tritanopic confusion axis (tritan stimuli) at and around the adult isoluminant match. For comparison, visual evoked responses to red-green and luminance-modulated stimuli were recorded from the same infants at the same ages. Evoked responses were also recorded from colour-normal adults for comparison with those of the infants. The transient VEP allowed observation of response morphology as luminance differences were introduced to the chromatic stimuli. In this way, an estimate of isoluminance was possible in infants. Estimated isoluminant points for a group of six infants aged 6 to 10 weeks closely approximated the adult isoluminant match. This finding has implications for the use of photometric isoluminance in infant work, and suggests that photopic spectral sensitivity is similar in infants and adults. Abnormalities of the visual evoked responses to tritan, red-green and luminance-modulated stimuli in an infant with cystic fibrosis are reported. The results suggest abnormal function of the retino-striate visual pathway in this infant, and it is argued that these may be secondary to his illness, although data from more infants with cystic fibrosis are needed to clarify this further. A group of nine healthy infants demonstrated evoked responses to tritan stimuli by 4 to 10 weeks and to red-green stimuli by 6 to 11 weeks post-term age. Responses to luminance-modulated stimuli were present in all nine infants at the earliest age tested, namely 4 weeks post-term. The slightly earlier age of onset of evoked responses to tritan stimuli than for red-green may be explained by the relatively lower cone contrast afforded by red-green stimuli. Latency of the evoked response to both types of chromatic stimuli and to luminance-modulated stimuli decreased with age at a similar rate, suggesting that the visual pathways transmitting luminance and chromatic information mature at similar rates in young infants

    The Extraterrestrial Dust Flux: Size Distribution and Mass Contribution Estimates Inferred From the Transantarctic Mountains (TAM) Micrometeorite Collection

    Get PDF
    This study explores the long‐duration (0.8–2.3 Ma), time‐averaged micrometeorite flux (mass and size distribution) reaching Earth, as recorded by the Transantarctic Mountains (TAM) micrometeorite collection. We investigate a single sediment trap (TAM65), performing an exhaustive recovery and characterization effort and identifying 1,643 micrometeorites (between 100 and 2,000 μm). Approximately 7% of particles are unmelted or scoriaceous, of which 75% are fine‐grained. Among cosmic spherules, 95.6% are silicate‐dominated S‐types, and further subdivided into porphyritic (16.9%), barred olivine (19.9%), cryptocrystalline (51.6%), and vitreous (7.5%). Our (rank)‐size distribution is fit against a power law with a slope of −3.9 (R2 = 0.98) over the size range 200–700 μm. However, the distribution is also bimodal, with peaks centered at ~145 and ~250 μm. Remarkably similar peak positions are observed in the Larkman Nunatak data. These observations suggest that the micrometeorite flux is composed of multiple dust sources with distinct size distributions. In terms of mass, the TAM65 trap contains 1.77 g of extraterrestrial dust in 15 kg of sediment (<5 mm). Upscaling to a global annual estimate gives 1,555 (±753) t/year—consistent with previous micrometeorite abundance estimates and almost identical to the South Pole Water Well estimate (~1,600 t/year), potentially indicating minimal variation in the background cosmic dust flux over the Quaternary. The greatest uncertainty in our mass flux calculation is the accumulation window. A minimum age (0.8 Ma) is robustly inferred from the presence of Australasian microtektites, while the upper age (~2.3 Ma) is loosely constrained based on 10Be exposure dating of glacial surfaces at Roberts Butte (6 km from our sample site)

    My Ship O\u27 Dreams

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5195/thumbnail.jp

    The Thermal Decomposition of Fine-grained Micrometeorites, Observations from Mid-IR Spectroscopy

    Get PDF
    We analysed 44 fine-grained and scoriaceous micrometeorites. A bulk mid-IR spectrum (8–13 lm) for each grain was collected and the entire micrometeorite population classified into 5 spectral groups, based on the positions of their absorption bands. Corresponding carbonaceous Raman spectra, textural observations from SEM-BSE and bulk geochemical data via EMPA were collected to aid in the interpretation of mid-IR spectra. The 5 spectral groups identified correspond to progressive thermal decomposition. Unheated hydrated chondritic matrix, composed predominantly of phyllosilicates, exhibit smooth, asymmetric spectra with a peak at 10 lm. Thermal decomposition of sheet silicates evolves through dehydration, dehydroxylation, annealing and finally by the onset of partial melting. Both CI-like and CM-like micrometeorites are shown to pass through the same decomposition stages and produce similar mid-IR spectra. Using known temperature thresholds for each decomposition stage it is possible to assign a peak temperature range to a given micrometeorite. Since the temperature thresholds for decomposition reactions are defined by the phyllosilicate species and the cation composition and that these variables are markedly different between CM and CI classes, atmospheric entry should bias the dust flux to favour the survival of CIlike grains, whilst preferentially melting most CM-like dust. However, this hypothesis is inconsistent with empirical observations and instead requires that the source ratio of CI:CM dust is heavily skewed in favour of CM material. In addition, a small population of anomalous grains are identified whose carbonaceous and petrographic characteristics suggest in-space heating and dehydroxylation have occurred. These grains may therefore represent regolith micrometeorites derived from the surface of C-type asteroids. Since the spectroscopic signatures of dehydroxylates are distinctive, i.e. characterised by a reflectance peak at 9.0–9.5 lm, and since the surfaces of C-type asteroids are expected to be heated via impact gardening, we suggest that future spectroscopic investigations should attempt to identify dehydroxylate signatures in the reflectance spectra of young carbonaceous asteroid families
    corecore