36,790 research outputs found

    Top-Antitop-Quark Production and Decay Properties at the Tevatron

    Full text link
    At the Tevatron, the collider experiments CDF and DO have data sets at their disposal that comprise a few thousand reconstructed top-antitop-quark pairs and allow for precision measurements of the cross section as well as production and decay properties. Besides comparing the measurements to standard model predictions, these data sets open a window to physics beyond the standard model. Dedicated analyses look for new heavy gauge bosons, fourth generation quarks, and flavor-changing neutral currents. In this mini-review the current status of these measurements is summarized.Comment: Mini-review to be submitted to Mod. Phys. Lett. A, was derived from the proceedings of the 21st Rencontres de Blois: Windows on the Universe, Blois, France, 21. - 27. June 2009. 19 pages. 2nd revision: correct a few minor mistakes, update references

    Fermi resonance-algebraic model for molecular vibrational spectra

    Full text link
    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to fit the recently observed vibrational spectrum of the water molecule and arsine (AsH_3), respectively, and results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method for describing molecular vibrations with small standard deviations

    The Secrets of Salient Object Segmentation

    Get PDF
    In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient object benchmarks, called the dataset design bias, by over emphasizing the stereotypical concepts of saliency. The dataset design bias does not only create the discomforting disconnection between fixations and salient object segmentation, but also misleads the algorithm designing. Based on our analysis, we propose a new high quality dataset that offers both fixation and salient object segmentation ground-truth. With fixations and salient object being presented simultaneously, we are able to bridge the gap between fixations and salient objects, and propose a novel method for salient object segmentation. Finally, we report significant benchmark progress on three existing datasets of segmenting salient objectsComment: 15 pages, 8 figures. Conference version was accepted by CVPR 201

    Necessary and sufficient conditions for local creation of quantum discord

    Full text link
    We show that a local channel cannot create quantum discord (QD) for zero QD states of size d3d\geq3 if and only if either it is a completely decohering channel or it is a nontrivial isotropic channel. For the qubit case this propertiy is additionally characteristic to the completely decohering channel or the commutativity-preserving unital channel. In particular, the exact forms of the completely decohering channel and the commutativity-preserving unital qubit channel are proposed. Consequently, our results confirm and improve the conjecture proposed by X. Hu et al. for the case of d3d\geq3 and improve the result proposed by A. Streltsov et al. for the qubit case. Furthermore, it is shown that a local channel nullifies QD in any state if and only if it is a completely decohering channel. Based on our results, some protocols of quantum information processing issues associated with QD, especially for the qubit case, would be experimentally accessible.Comment: 8 page

    Enhanced bsgb\to sg Decay, Inclusive η\eta^\prime Production, and the Gluon Anomaly

    Full text link
    The experimental hint of large Bη+XsB\to \eta^\prime + X_s is linked to the bsb\to s penguins via the gluon anomaly. Using running αs\alpha_s in the η\eta^\prime-gg-gg coupling, the standard bsgb\to sg^* penguin alone seems insufficient, calling for the need of dipole bsgb\to sg at 10% level from new physics, which could also resolve the Bs.l.{\cal B}_{s.l.} and charm counting problems. The intereference of standard and new physics contributions may result in direct CP asymmetries at 10% level, which could be observed soon at B Factories.Comment: 12 pages, revtex, 3 figs. (version to appear in Phys. Rev. Lett.

    q-deformed Supersymmetric t-J Model with a Boundary

    Full text link
    The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra Uq[sl(21)^]U_q[\hat{sl(2|1)}]. We give the bosonization of the boundary states. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy.Comment: LaTex file 18 page

    Electron-Phonon Coupling in Boron-Doped Diamond Superconductor

    Full text link
    The electronic structure, lattice dynamics, and electron-phonon coupling of the boron-doped diamond are investigated using the density functional supercell method. Our results indicate the boron-doped diamond is a phonon mediated superconductor, con rming previous theoretical conclusions deduced from the calculations employing the virtual crystal approximation. We show that the optical phonon modes involving B vibrations play an important role in the electron-phonon coupling. Di erent from previous theoretical results, our calculated electron-phonon coupling constant is 0.39 and the estimated superconducting transition temperature Tc is 4.4 K for the boron doped diamond with 2.78% boron content using the Coulomb pseudopotential \mu*= 0.10, in excellent agreement with the experimental result.Comment: 11 pages, 4 figures, Accepted by PR

    On Singularity Formation of a Nonlinear Nonlocal System

    Get PDF
    We investigate the singularity formation of a nonlinear nonlocal system. This nonlocal system is a simplified one-dimensional system of the 3D model that was recently proposed by Hou and Lei in [13] for axisymmetric 3D incompressible Navier-Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier-Stokes equations is that the convection term is neglected in the 3D model. In the nonlocal system we consider in this paper, we replace the Riesz operator in the 3D model by the Hilbert transform. One of the main results of this paper is that we prove rigorously the finite time singularity formation of the nonlocal system for a large class of smooth initial data with finite energy. We also prove the global regularity for a class of smooth initial data. Numerical results will be presented to demonstrate the asymptotically self-similar blow-up of the solution. The blowup rate of the self-similar singularity of the nonlocal system is similar to that of the 3D model.Comment: 28 pages, 9 figure

    Four Statements about the Fourth Generation

    Get PDF
    This summary of the Workshop "Beyond the 3-generation SM in the LHC era" presents a brief discussion of the following four statements about the fourth generation: 1) It is not excluded by EW precision data; 2) It addresses some of the currently open questions; 3) It can accommodate emerging possible hints of new physics; 4) LHC has the potential to discover or fully exclude it.Comment: Summary of the "Beyond the 3-generation SM in the LHC era" Workshop, CERN, September 4-5, 2008; 7 pages. V2: updated bibliography and minor typos fixed. To appear in PMC Physics
    corecore