6,393 research outputs found

    Phase operators, phase states and vector phase states for SU(3) and SU(2,1)

    Full text link
    This paper focuses on phase operators, phase states and vector phase states for the sl(3) Lie algebra. We introduce a one-parameter generalized oscillator algebra A(k,2) which provides a unified scheme for dealing with su(3) (for k < 0), su(2,1) (for k > 0) and h(4) x h(4) (for k = 0) symmetries. Finite- and infinite-dimensional representations of A(k,2) are constructed for k < 0 and k > 0 or = 0, respectively. Phase operators associated with A(k,2) are defined and temporally stable phase states (as well as vector phase states) are constructed as eigenstates of these operators. Finally, we discuss a relation between quantized phase states and a quadratic discrete Fourier transform and show how to use these states for constructing mutually unbiased bases

    Sharp interface limit for a phase field model in structural optimization

    Full text link
    We formulate a general shape and topology optimization problem in structural optimization by using a phase field approach. This problem is considered in view of well-posedness and we derive optimality conditions. We relate the diffuse interface problem to a perimeter penalized sharp interface shape optimization problem in the sense of Γ\Gamma-convergence of the reduced objective functional. Additionally, convergence of the equations of the first variation can be shown. The limit equations can also be derived directly from the problem in the sharp interface setting. Numerical computations demonstrate that the approach can be applied for complex structural optimization problems

    Image Storage in Hot Vapors

    Full text link
    We theoretically investigate image propagation and storage in hot atomic vapor. A 4f4f system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.Comment: 11 pages, 3 figure

    Placenta Percreta: The ghost of the Accreta opera

    Get PDF

    Mass and Spin of Poincare Gauge Theory

    Get PDF
    We discuss two expressions for the conserved quantities (energy momentum and angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations of the Hamiltonians, of which the expressions are the respective boundary terms, are well defined, if we choose an appropriate phase space for asymptotic flat gravitating systems. Furthermore, we compare the expressions with others, known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra
    corecore