567 research outputs found
Sylvius aqueduct septum
We present a case of chronic hydrocephalus discovered in adulthood through an episode of acute decompensation. Multimodal imaging revealed the cause of this hydrocephalus to be a membranous septum of the aqueduct of Sylvius, a condition for which few reports exist
Automatic Calibration of Artificial Neural Networks for Zebrafish Collective Behaviours using a Quality Diversity Algorithm
During the last two decades, various models have been proposed for fish
collective motion. These models are mainly developed to decipher the biological
mechanisms of social interaction between animals. They consider very simple
homogeneous unbounded environments and it is not clear that they can simulate
accurately the collective trajectories. Moreover when the models are more
accurate, the question of their scalability to either larger groups or more
elaborate environments remains open. This study deals with learning how to
simulate realistic collective motion of collective of zebrafish, using
real-world tracking data. The objective is to devise an agent-based model that
can be implemented on an artificial robotic fish that can blend into a
collective of real fish. We present a novel approach that uses Quality
Diversity algorithms, a class of algorithms that emphasise exploration over
pure optimisation. In particular, we use CVT-MAP-Elites, a variant of the
state-of-the-art MAP-Elites algorithm for high dimensional search space.
Results show that Quality Diversity algorithms not only outperform classic
evolutionary reinforcement learning methods at the macroscopic level (i.e.
group behaviour), but are also able to generate more realistic biomimetic
behaviours at the microscopic level (i.e. individual behaviour).Comment: 8 pages, 4 figures, 1 tabl
Multivoxel Pattern Analysis Reveals Auditory Motion Information in MT+ of Both Congenitally Blind and Sighted Individuals
Cross-modal plasticity refers to the recruitment of cortical regions involved in the processing of one modality (e.g. vision) for processing other modalities (e.g. audition). The principles determining how and where cross-modal plasticity occurs remain poorly understood. Here, we investigate these principles by testing responses to auditory motion in visual motion area MT+ of congenitally blind and sighted individuals. Replicating previous reports, we find that MT+ as a whole shows a strong and selective responses to auditory motion in congenitally blind but not sighted individuals, suggesting that the emergence of this univariate response depends on experience. Importantly, however, multivoxel pattern analyses showed that MT+ contained information about different auditory motion conditions in both blind and sighted individuals. These results were specific to MT+ and not found in early visual cortex. Basic sensitivity to auditory motion in MT+ is thus experience-independent, which may be a basis for the region's strong cross-modal recruitment in congenital blindness
A new view of electrochemistry at highly oriented pyrolytic graphite
Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes
Evolutionary optimisation of neural network models for fish collective behaviours in mixed groups of robots and zebrafish
Animal and robot social interactions are interesting both for ethological
studies and robotics. On the one hand, the robots can be tools and models to
analyse animal collective behaviours, on the other hand, the robots and their
artificial intelligence are directly confronted and compared to the natural
animal collective intelligence. The first step is to design robots and their
behavioural controllers that are capable of socially interact with animals.
Designing such behavioural bio-mimetic controllers remains an important
challenge as they have to reproduce the animal behaviours and have to be
calibrated on experimental data. Most animal collective behavioural models are
designed by modellers based on experimental data. This process is long and
costly because it is difficult to identify the relevant behavioural features
that are then used as a priori knowledge in model building. Here, we want to
model the fish individual and collective behaviours in order to develop robot
controllers. We explore the use of optimised black-box models based on
artificial neural networks (ANN) to model fish behaviours. While the ANN may
not be biomimetic but rather bio-inspired, they can be used to link perception
to motor responses. These models are designed to be implementable as robot
controllers to form mixed-groups of fish and robots, using few a priori
knowledge of the fish behaviours. We present a methodology with multilayer
perceptron or echo state networks that are optimised through evolutionary
algorithms to model accurately the fish individual and collective behaviours in
a bounded rectangular arena. We assess the biomimetism of the generated models
and compare them to the fish experimental behaviours.Comment: 10 pages, 4 figure
Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals
An increasing variety of indicators of antimicrobial usage has become available in human and veterinary medicine, with no consensus on the most appropriate indicators to be used. The objective of this review is therefore to provide guidance on the selection of indicators, intended for those aiming to quantify antimicrobial usage based on sales, deliveries or reimbursement data. Depending on the study objective, different requirements apply to antimicrobial usage quantification in terms of resolution, comprehensiveness, stability over time, ability to assess exposure and comparability. If the aim is to monitor antimicrobial usage trends, it is crucial to use a robust quantification system that allows stability over time in terms of required data and provided output; to compare usage between different species or countries, comparability must be ensured between the different populations. If data are used for benchmarking, the system comprehensiveness is particularly crucial, while data collected to study the association between usage and resistance should express the exposure level and duration as a measurement of the exerted selection pressure. Antimicrobial usage is generally described as the number of technical units consumed normalized by the population at risk of being treated in a defined period. The technical units vary from number of packages to number of individuals treated daily by adding different levels of complexity such as daily dose or weight at treatment. These technical units are then related to a description of the population at risk, based either on biomass or number of individuals. Conventions and assumptions are needed for all of these calculation steps. However, there is a clear lack of standardization, resulting in poor transparency and comparability. By combining study requirements with available approaches to quantify antimicrobial usage, we provide suggestions on the most appropriate indicators and data sources to be used for a given study objective
Peripersonal space representation develops independently from visual experience
Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation
Governments, decentralisation, and the risk of electoral defeat
<p>In the last three decades several countries around the world have transferred authority from their national to their regional governments. However, not all their regions have been empowered to the same degree and important differences can be observed between and within countries. Why do some regions obtain more power than others? Current literature argues that variation in the redistribution of power and resources between regions is introduced by demand. Yet these explanations are conditional on the presence of strong regionalist parties or territorial cleavages. This article proposes instead a theory that links the government’s risk of future electoral defeat with heterogeneous decentralisation, and tests its effects using data from 15 European countries and 141 regions. The results provide evidence that parties in government protect themselves against the risk of electoral defeat by selectively targeting decentralisation towards regions in which they are politically strong. The findings challenge previous research that overestimates the importance of regionalist parties while overlooking differences between regions.</p
<i>Gastruloids</i> develop the three body axes in the absence of extraembryonic tissues and spatially localised signalling
Establishment of the three body axes is a critical step during animal development. In mammals, genetic studies have shown that a combination of precisely deployed signals from extraembryonic tissues position the anteroposterior axis (AP) within the embryo and lead to the emergence of the dorsoventral (DV) and left-right (LR) axes. We have used Gastruloids , embryonic organoids, as a model system to understand this process and find that they are able to develop AP, DV and LR axes as well as to undergo axial elongation in a manner that mirror embryos. The Gastruloids can be grown for 160 hours and form derivatives from ectoderm, mesoderm and endoderm. We focus on the AP axis and show that in the Gastruloids this axis is registered in the expression of T/Bra at one pole that corresponds to the tip of the elongation. We find that localisation of T/Bra expression depends on the combined activities of Wnt/ β -Catenin and Nodal/Smad2,3 signalling, and that BMP signalling is dispensable for this process. Furthermore, AP axis specification occurs in the absence of both extraembryonic tissues and of localised sources of signalling. Our experiments show that Nodal, together with Wnt/ β -Catenin signalling, is essential for the expression of T/Bra but that Wnt signalling has a separable activity in the elongation of the axis. The results lead us to suggest that, in the embryo, the role of the extraembryonic tissues might not be to induce the axes but to bias an intrinsic ability of the embryo to break its initial symmetry and organise its axes. One sentence summary Culture of aggregates of defined number of Embryonic Stem cells leads to self-organised embryo-like structures which, in the absence of localised signalling from extra embryonic tissues and under the autonomous influence of Wnt and Nodal signalling, develop the three main axes of the body
- …