82,240 research outputs found
Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly
We report on the growth of nanostructured rods fabricated by electrostatic
co-assembly between iron oxide nanoparticles and polymers. The nanoparticles
put under scrutiny, {\gamma}-Fe2O3 or maghemite, have diameter of 6.7 nm and
8.3 nm and narrow polydispersity. The co-assembly is driven by i) the
electrostatic interactions between the polymers and the particles, and by ii)
the presence of an externally applied magnetic field. The rods are
characterized by large anisotropy factors, with diameter 200 nm and length
comprised between 1 and 100 {\mu}m. In the present work, we provide for the
first time the morphology diagram for the rods as a function of ionic strength
and concentration. We show the existence of a critical nanoparticle
concentration and of a critical ionic strength beyond which the rods do not
form. In the intermediate regimes, only tortuous and branched aggregates are
detected. At higher concentrations and lower ionic strengths, linear and stiff
rods with superparamagnetic properties are produced. Based on these data, a
mechanism for the rod formation is proposed. The mechanism proceeds in two
steps : the formation and growth of spherical clusters of particles, and the
alignment of the clusters induced by the magnetic dipolar interactions. As far
as the kinetics of these processes is concerned, the clusters growth and their
alignment occur concomitantly, leading to a continuous accretion of particles
or small clusters, and a welding of the rodlike structure.Comment: 15 pages, 10 figures, one tabl
New Born-Infeld and -Brane Actions under 2-Metric and 3-Metric Prescriptions
The parent action method is utilized to the Born-Infeld and -brane
theories. Various new forms of Born-Infeld and -brane actions are derived
by using this systematic approach, in which both the already known 2-metric and
newly proposed 3-metric prescriptions are considered. An auxiliary worldvolume
tensor field, denoted by , is introduced and treated
probably as an additional worldvolume metric because it plays a similar role to
that of the auxiliary worldvolume (also called {\em intrinsic}) metric
. Some properties, such as duality, permutation and Weyl
invariance as a local worldvolume symmetry of the new forms are analyzed. In
particular, a new symmetry, i.e. the double Weyl invariance is discovered in
3-metric forms.Comment: v1: 30 pages, 4 figures; v2: 31 pages, 4 figures, final version with
some modifications to appear in Phys. Rev.
Poly(acrylic acid)-coated iron oxide nanoparticles : quantitative evaluation of the coating properties and applications for the removal of a pollutant dye
In this work, 6 to 12 nm iron oxide nanoparticles were synthesized and coated
with poly(acrylic acid) chains of molecular weight 2100 g/mol. Based on a
quantitative evaluation of the dispersions, the bare and coated particles were
thoroughly characterized. The number densities of polymers adsorbed at the
particle surface and of available chargeable groups were found to be 1.9 +/-
0.3 nm-2 and 26 +/- 4 nm-2, respectively. Occurring via a multi-site binding
mechanism, the electrostatic coupling leads to a solid and resilient anchoring
of the chains. To assess the efficacy of the particles for pollutant
remediation, the adsorption isotherm of methylene blue molecules, a model of
pollutant, was determined. The excellent agreement between the predicted and
measured amounts of adsorbed dyes suggests that most carboxylates participate
to the complexation and adsorption mechanisms. An adsorption of 830 mg/g was
obtained. This quantity compares well with the highest values available for
this dye.Comment: 14 pages 5 figures, accepted 06-Dec-2012; Journal of Colloid and
Interface Science (2013
6 Batch Injection and Slipped Beam Tune Measurements in Fermilab's Main Injector
During Nova operations it is planned to run the Fermilab Recycler in a 12
batch slip stacking mode. In preparation for this, measurements of the tune
during a six batch injection and then as the beam is slipped by changing the RF
frequency, but without a 7th injection, have been carried out in the Main
Injector. The coherent tune shifts due to the changing beam intensity were
measured and compared well with the theoretically expected tune shift. The tune
shifts due to changing RF frequency, required for slip stacking, also compare
well with the linear theory, although some nonlinear affects are apparent at
large frequency changes. These results give us confidence that the expected
tunes shifts during 12 batch slip stacking Recycler operations can be
accommodated.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012)
20-25 May 2012, New Orleans, Louisian
- …