21,891 research outputs found

    Locally addressable tunnel barriers within a carbon nanotube

    Get PDF
    We report the realization and characterization of independently controllable tunnel barriers within a carbon nanotube. The nanotubes are mechanically bent or kinked using an atomic force microscope, and top gates are subsequently placed near each kink. Transport measurements indicate that the kinks form gate-controlled tunnel barriers, and that gates placed away from the kinks have little or no effect on conductance. The overall conductance of the nanotube can be controlled by tuning the transmissions of either the kinks or the metal-nanotube contacts.Comment: related papers at http://marcuslab.harvard.ed

    Spinor Fields and Symmetries of the Spacetime

    Full text link
    In the background of a stationary black hole, the "conserved current" of a particular spinor field always approaches the null Killing vector on the horizon. What's more, when the black hole is asymptotically flat and when the coordinate system is asymptotically static, then the same current also approaches the time Killing vector at the spatial infinity. We test these results against various black hole solutions and no exception is found. The spinor field only needs to satisfy a very general and simple constraint.Comment: 19 page

    Implementing optimal control pulse shaping for improved single-qubit gates

    Full text link
    We employ pulse shaping to abate single-qubit gate errors arising from the weak anharmonicity of transmon superconducting qubits. By applying shaped pulses to both quadratures of rotation, a phase error induced by the presence of higher levels is corrected. Using a derivative of the control on the quadrature channel, we are able to remove the effect of the anharmonic levels for multiple qubits coupled to a microwave resonator. Randomized benchmarking is used to quantify the average error per gate, achieving a minimum of 0.007+/-0.005 using 4 ns-wide pulse.Comment: 4 pages, 4 figure

    Malignant and noninvasive skin tumours in renal transplant recipients.

    Get PDF
    Background. Transplant recipients require immunosuppression to prevent graft rejection. This conveys an increased risk of malignancy, particularly skin tumours. There is a need for up-to-date data for the South of England. Method. Pathology records were reviewed for 709 kidney transplant recipients on immunosuppression at our hospital from 1995 to 2008. Skin tumours were recorded/analysed. Results. Mean age at transplant was 46 years. Mean length of follow-up was 7.2 years and total follow-up was 4926 person-years. 53 (7.5%) patients (39/458 (8.5%) males and 14/251 (5.6%) females) developed ≥1 skin malignancy. Cumulative incidences of 4.0%, 7.5%, and 12.2% were observed for those with <5, <10, and ≥10 years follow-up, respectively. The rate was 45 tumours per 1000 person-years at risk. Additionally, 21 patients (3.0%) only had noninvasive tumours. 221 malignant skin tumours were found: 50.2% were SCCs, 47.1% BCCs, and 2.7% malignant melanomas. Mean years to first tumour were 5.8. Mean number of tumours per patient was 4, with mean interval of 12 months. Conclusions. Despite changes in transplantation practice during the time since the last data were published in this region, these findings are similar to previous studies. This adds to the evidence allowing clinicians to inform patients in this region of their risk

    Averaging approximation to singularly perturbed nonlinear stochastic wave equations

    Full text link
    An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation \nu u_{tt}+u_t=\D u+f(u)+\nu^\alpha\dot{W} on an open bounded domain D⊂RnD\subset\R^n\,, 1≤n≤31\leq n\leq 3\,. Here ν>0\nu>0 is a small parameter characterising the singular perturbation, and να\nu^\alpha\,, 0≤α≤1/20\leq \alpha\leq 1/2\,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small ν\nu, u_t=\D u+f(u)+\nu^\alpha\dot{W} to an error of \ord{\nu^\alpha}\,.Comment: 16 pages. Submitte

    Charge sensing in carbon nanotube quantum dots on microsecond timescales

    Full text link
    We report fast, simultaneous charge sensing and transport measurements of gate-defined carbon nanotube quantum dots. Aluminum radio frequency single electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide single-electron charge sensing on microsecond timescales. Simultaneously, rf reflectometry allows fast measurement of transport through the nanotube dot. Charge stability diagrams for the nanotube dot in the Coulomb blockade regime show extended Coulomb diamonds into the high-bias regime, as well as even-odd filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure

    Running-phase state in a Josephson washboard potential

    Full text link
    We investigate the dynamics of the phase variable of an ideal underdamped Josephson junction in switching current experiments. These experiments have provided the first evidence for macroscopic quantum tunneling in large Josephson junctions and are currently used for state read-out of superconducting qubits. We calculate the shape of the resulting macroscopic wavepacket and find that the propagation of the wavepacket long enough after a switching event leads to an average voltage increasing linearly with time.Comment: 6 pages, 3 figure
    • …
    corecore