27,533 research outputs found

    Solar flare hard X-ray spikes observed by RHESSI: a statistical study

    Full text link
    Context. Hard X-ray (HXR) spikes refer to fine time structures on timescales of seconds to milliseconds in high-energy HXR emission profiles during solar flare eruptions. Aims. We present a preliminary statistical investigation of temporal and spectral properties of HXR spikes. Methods. Using a three-sigma spike selection rule, we detected 184 spikes in 94 out of 322 flares with significant counts at given photon energies, which were detected from demodulated HXR light curves obtained by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). About one fifth of these spikes are also detected at photon energies higher than 100 keV. Results. The statistical properties of the spikes are as follows. (1) HXR spikes are produced in both impulsive flares and long-duration flares with nearly the same occurrence rates. Ninety percent of the spikes occur during the rise phase of the flares, and about 70% occur around the peak times of the flares. (2) The time durations of the spikes vary from 0.2 to 2 s, with the mean being 1.0 s, which is not dependent on photon energies. The spikes exhibit symmetric time profiles with no significant difference between rise and decay times. (3) Among the most energetic spikes, nearly all of them have harder count spectra than their underlying slow-varying components. There is also a weak indication that spikes exhibiting time lags in high-energy emissions tend to have harder spectra than spikes with time lags in low-energy emissions.Comment: 16 pages, 13 figure

    Spin-current injection and detection in strongly correlated organic conductor

    Full text link
    Spin-current injection into an organic semiconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br\rm{\kappa\text{-}(BEDT\text{-}TTF)_2Cu[N(CN)_2]Br} film induced by the spin pumping from an yttrium iron garnet (YIG) film. When magnetization dynamics in the YIG film is excited by ferromagnetic or spin-wave resonance, a voltage signal was found to appear in the κ-(BEDT-TTF)2Cu[N(CN)2]Br\rm{\kappa\text{-}(BEDT\text{-}TTF)_2Cu[N(CN)_2]Br} film. Magnetic-field-angle dependence measurements indicate that the voltage signal is governed by the inverse spin Hall effect in κ-(BEDT-TTF)2Cu[N(CN)2]Br\rm{\kappa\text{-}(BEDT\text{-}TTF)_2Cu[N(CN)_2]Br}. We found that the voltage signal in the κ-(BEDT-TTF)2Cu[N(CN)2]Br\rm{\kappa\text{-}(BEDT\text{-}TTF)_2Cu[N(CN)_2]Br}/YIG system is critically suppressed around 80 K, around which magnetic and/or glass transitions occur, implying that the efficiency of the spin-current injection is suppressed by fluctuations which critically enhanced near the transitions

    Weakly coupled s=1/2s = 1/2 quantum spin singlets in Ba3_{3}Cr2_{2}O8_{8}

    Full text link
    Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba3_3Cr2_2O8_8. Even without field, we found that there exist three singlet-to-triplet excitation modes in (h,h,l)(h,h,l) scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr5+(3d1)^{5+} (3d^1). The strong intradimer coupling of J0=2.38(2)J_0 = 2.38(2) meV and weak interdimer interactions (∣Jinter∣≤0.52(2)|J_{\rm inter}| \leq 0.52(2) meV) makes Ba3_3Cr2_2O8_8 a good model system for weakly-coupled s=1/2s = 1/2 quantum spin dimers

    Work Function of Single-wall Silicon Carbide Nanotube

    Full text link
    Using first-principles calculations, we study the work function of single wall silicon carbide nanotube (SiCNT). The work function is found to be highly dependent on the tube chirality and diameter. It increases with decreasing the tube diameter. The work function of zigzag SiCNT is always larger than that of armchair SiCNT. We reveal that the difference between the work function of zigzag and armchair SiCNT comes from their different intrinsic electronic structures, for which the singly degenerate energy band above the Fermi level of zigzag SiCNT is specifically responsible. Our finding offers potential usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure

    Single transverse-spin asymmetry in Drell-Yan lepton angular distribution

    Get PDF
    We calculate a single transverse-spin asymmetry for the Drell-Yan lepton-pair's angular distribution in perturbative QCD. At leading order in the strong coupling constant, the asymmetry is expressed in terms of a twist-3 quark-gluon correlation function T_F^{(V)}(x_1,x_2). In our calculation, the same result was obtained in both light-cone and covariant gauge in QCD, while keeping explicit electromagnetic current conservation for the virtual photon that decays into the lepton pair. We also present a numerical estimate of the asymmetry and compare the result to an existing other prediction.Comment: 15 pages, Revtex, 5 Postscript figures, uses aps.sty, epsfig.st
    • …
    corecore