49 research outputs found
Recurrent Ischemic Stroke and Bleeding in Patients With Atrial Fibrillation Who Suffered an Acute Stroke While on Treatment With Nonvitamin K Antagonist Oral Anticoagulants: The RENO-EXTEND Study
Background:
In patients with atrial fibrillation who suffered an ischemic stroke while on treatment with nonvitamin K antagonist oral anticoagulants, rates and determinants of recurrent ischemic events and major bleedings remain uncertain.
Methods:
This prospective multicenter observational study aimed to estimate the rates of ischemic and bleeding events and their determinants in the follow-up of consecutive patients with atrial fibrillation who suffered an acute cerebrovascular ischemic event while on nonvitamin K antagonist oral anticoagulant treatment. Afterwards, we compared the estimated risks of ischemic and bleeding events between the patients in whom anticoagulant therapy was changed to those who continued the original treatment.
Results:
After a mean follow-up time of 15.0±10.9 months, 192 out of 1240 patients (15.5%) had 207 ischemic or bleeding events corresponding to an annual rate of 13.4%. Among the events, 111 were ischemic strokes, 15 systemic embolisms, 24 intracranial bleedings, and 57 major extracranial bleedings. Predictive factors of recurrent ischemic events (strokes and systemic embolisms) included CHA2DS2-VASc score after the index event (odds ratio [OR], 1.2 [95% CI, 1.0–1.3] for each point increase; P=0.05) and hypertension (OR, 2.3 [95% CI, 1.0–5.1]; P=0.04). Predictive factors of bleeding events (intracranial and major extracranial bleedings) included age (OR, 1.1 [95% CI, 1.0–1.2] for each year increase; P=0.002), history of major bleeding (OR, 6.9 [95% CI, 3.4–14.2]; P=0.0001) and the concomitant administration of an antiplatelet agent (OR, 2.8 [95% CI, 1.4–5.5]; P=0.003). Rates of ischemic and bleeding events were no different in patients who changed or not changed the original nonvitamin K antagonist oral anticoagulants treatment (OR, 1.2 [95% CI, 0.8–1.7]).
Conclusions:
Patients suffering a stroke despite being on nonvitamin K antagonist oral anticoagulant therapy are at high risk of recurrent ischemic stroke and bleeding. In these patients, further research is needed to improve secondary prevention by investigating the mechanisms of recurrent ischemic stroke and bleeding
Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation
OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≥11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved
Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies
BACKGROUND: Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke.
METHODS: We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602.
FINDINGS: Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19-2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20-1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82-3·29) for intracranial haemorrhage and 1·23 (1·08-1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08-6·72] for intracranial haemorrhage vs 1·47 [1·19-1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36-9·05] vs 1·43 [1·07-1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69-15·81] vs 1·86 [1·23-1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48-84] per 1000 patient-years vs 27 intracranial haemorrhages [17-41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46-108] per 1000 patient-years vs 39 intracranial haemorrhages [21-67] per 1000 patient-years).
INTERPRETATION: In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden
Macro and Micro-Scale Features of Thermoelectric PbTe (Br, Na) Systems: Micro-FTIR Spectroscopy, Micro-Seebeck Measurements, and SEM/EDX Observations
In this work, n-type and p-type PbTe doped with Br and Na, respectively, were thoroughly examined to determine the effect of the dopant on microstructure. Macro and micro homogeneity of the samples were studied by means of micro-Fourier-transform infrared (micro-FTIR) spectroscopy, micro-Seebeck measurements, and scanning electron microscopy with energy-dispersive x-ray analysis (SEM/EDX). SEM/EDX observations showed the samples were not single-phase materials—second phases were created by inclusions that disturbed the coherence of the matrix and, subsequently, drastically affected the Seebeck coefficient. In a micro-scale study, local variations of sodium content were detected in Na-doped samples; in Br-doped samples a second, PbBr2, phase was observed in the PbTe matrix. A direct effect of matrix dopant on Seebeck coefficient and plasmon frequency for the Br-doped and Na-doped samples was observed by use of the three complementary techniques
Quantitative analysis of human kallikrein gene 14 expression in breast tumours indicates association with poor prognosis
KLK14 (formerly known as KLK-L6) is a recently identified member of the human kallikrein gene family. This family harbours several genes aberrantly expressed in various cancers as well as established (PSA/hK3, hK2) and potential (hK6, hK10) cancer markers. Similar to other kallikrein genes, KLK14 was found to be regulated by steroid hormones, particularly androgens and progestins, in breast and ovarian cancer cell lines. Preliminary studies indicated that KLK14 is differentially expressed in breast, ovarian, prostatic and testicular tumours. Given the above, we determined the prognostic significance of KLK14 expression in breast cancer. We studied KLK14 expression in 178 histologically confirmed epithelial breast carcinomas by quantitative reverse transcription -polymerase chain reaction and correlated with clinicopathological variables (tumour stage, grade, histotype etc.) and with outcome (disease-free survival and overall survival), monitored over a median of 76 months. KLK14 mRNA levels ranged from 0 to 1219 arbitrary units in breast cancer tissues, with a mean+s.e. of 136+22. An optimal cutoff value of 40.5 arbitrary units was selected, to categorise tumours as KLK14-positive or negative. Higher concentrations of KLK14 mRNA were more frequently found in patients with advanced stage (III) disease (P=0.032). No statistically significant association was found between KLK14 and the other clinicopathological variables. KLK14 overexpression was found to be a significant predictor of decreased disease-free survival (hazard ratio of 2.31, P=0.001) and overall survival (hazard ratio of 2.21, P=0.005). Cox multivariate analysis indicated that KLK14 was an independent prognostic indicator of disease-free survival and overall survival. KLK14 also has independent prognostic value in subgroups of patients with a tumour size 42 cm and positive nodal, oestrogen receptor and progestin receptor status. We conclude that KLK14 expression, as assessed by quantitative reverse transcription -polymerase chain reaction, is an independent marker of unfavourable prognosis for breast cancer