4,945 research outputs found

    Possible singlet to triplet pairing transition in NaxCoO2 H2O

    Full text link
    We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of Hc2(T) in a weak field regime. In order to explain this result we have derived and solved Gor'kov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.Comment: 6 pages, 5 figures, revte

    Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-

    Full text link
    Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na de-intercalation from alpha-NaCoO2 and by the floating-zone method, respectively. It has been found that successive phase transitions take place at temperatures Tc1 and Tc2 in both systems. The appearance of the internal magnetic field at Tc1 with decreasing temperature T indicates that the antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined from the data taken for magnetically ordered state are similar to those of gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the CoO2 layers between these systems do not significantly affect their physical properties. For gamma-K0.5CoO2, the quantitative difference of the physical quantities are found from those of beta- and gamma-Na0.5CoO2. The difference between the values of Tci (i = 1 and 2) of these systems might be explained by considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl

    Fermi surface and quasiparticle dynamics of Na(x)CoO2 {x=0.7} investigated by Angle-Resolved Photoemission Spectroscopy

    Full text link
    We present an angle-resolved photoemission study of Na0.7CoO2, the host cobaltate of the NaxCoO2.yH2O series. Our results show a large hexagonal-like hole-type Fermi surface, an extremely narrow strongly renormalized quasiparticle band and a small Fermi velocity. Along the Gamma to M high symmetry line, the quasiparticle band crosses the Fermi level from M toward Gamma consistent with a negative sign of effective single-particle hopping (t ): t is estimated to be about 8 meV which is on the order of exchange coupling J in this system. This suggests that t ~ J ~ 10 meV is an important energy scale in the system. Quasiparticles are well defined only in the T-linear resistivity regime. Small single particle hopping and unconventional quasiparticle dynamics may have implications for understanding the unusual behavior of this new class of compounds.Comment: Revised text, Added Figs, Submitted to PR

    Starburst99: Synthesis Models for Galaxies with Active Star Formation

    Full text link
    Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are an improved and extended version of the data set previously published by Leitherer & Heckman (1995). We have upgraded our code by implementing the latest set of stellar evolution models of the Geneva group and the model atmosphere grid compiled by Lejeune et al. (1997). Several predictions which were not included in the previous publication are shown here for the first time. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 10^6 to 10^9 yr. We also show the spectral energy distributions which are used to compute colors and other quantities. The full data set is available for retrieval at http://www.stsci.edu/science/starburst99/. This website allows users to run specific models with non-standard parameters as well. We also make the source code available to the community.Comment: 32 pages, LaTeX. All the Figures and the summary Table are located at http://www.stsci.edu/science/starburst99/, ApJ accepte

    Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2

    Full text link
    The determination by powder neutron diffraction of the ambient temperature crystal structures of compounds in the NaxCoO2 family, for 0.3 < x <= 1.0, is reported. The structures consist of triangular CoO2 layers with Na ions distributed in intervening charge reservoir layers. The shapes of the CoO6 octahedra that make up the CoO2 layers are found to be critically dependent on the electron count and on the distribution of the Na ions in the intervening layers, where two types of Na sites are available. Correlation of the shapes of cobalt-oxygen octahedra, the Na ion positions, and the electronic phase diagram in NaxCoO2 is made, showing how structural and electronic degrees of freedom can be coupled in electrically conducting triangular lattice systems.Comment: 15 pages, 1 tables, 6 figures Submitted to Physical Review

    Precise Control of Band Filling in NaxCoO2

    Full text link
    Electronic properties of the sodium cobaltate NaxCoO2 are systematically studied through a precise control of band filling. Resistivity, magnetic susceptibility and specific heat measurements are carried out on a series of high-quality polycrystalline samples prepared at 200 C with Na content in a wide range of 0.35 =< x =< 0.70. It is found that dramatic changes in electronic properties take place at a critical Na concentration x* that lies between 0.58 and 0.59, which separates a Pauli paramagnetic and a Curie-Weiss metals. It is suggested that at x* the Fermi level touches the bottom of the a1g band at the gamma point, leading to a crucial change in the density of states across x* and the emergence of a small electron pocket around the gamma point for x > x*.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Thermal and Electrical Properties of gamma-NaxCoO2 (0.70 < x < 0.78)

    Full text link
    We have performed specific heat and electric resistivity measurements of Nax_{x}CoO2_{2} (x=0.70x=0.70-0.78). Two anomalies have been observed in the specific heat data for x=0.78x=0.78, corresponding to magnetic transitions at Tc=22T_{c}=22 K and Tk9T_{k}\simeq 9 K reported previously. In the electrical resistivity, a steep decrease at TcT_{c} and a bending-like variation at TbT_{b}(=120K for x=0.78x=0.78) have been observed. Moreover, we have investigated the xx-dependence of these parameters in detail. The physical properties of this system are very sensitive to xx, and the inconsistent results of previous reports can be explained by a small difference in xx. Furthermore, for a higher xx value, a phase separation into Na-rich and Na-poor domains occurs as we previously proposed, while for a lower xx value, from characteristic behaviors of the specific heat and the electrical resistivity at the low-temperature region, the system is expected to be in the vicinity of the magnetic instability which virtually exists below x=0.70x=0.70.Comment: 4 pages (3 figures included) and an extra figure (gif), to be published in J. Phys. Soc. Jpn. 73 (9) with possible minor revision

    Structure and Dynamics of Superconducting NaxCoO(2) Hydrate and Its Unhydrated Analog

    Full text link
    Neutron scattering has been used to investigate the crystal structure and lattice dynamics of superconducting Na0.3CoO2 1.4(H/D)2O, and the parent Na0.3CoO2 material. The structure of Na0.3CoO2 consists of alternate layers of CoO2 and Na and is the same as the structure at higher Na concentrations. For the superconductor, the water forms two additional layers between the Na and CoO2, increasing the c-axis lattice parameter of the hexagonal P63/mmc space group from 11.16 A to 19.5 A. The Na ions are found to occupy a different configuration from the parent compound, while the water forms a structure that replicates the structure of ice. Both types of sites are only partially occupied. The CoO2 layer in these structures is robust, on the other hand, and we find a strong inverse correlation between the CoO2 layer thickness and the superconducting transition temperature (TC increases with decreasing thickness). The phonon density-of-states for Na0.3CoO2 exhibits distinct acoustic and optic bands, with a high-energy cutoff of ~100 meV. The lattice dynamical scattering for the superconductor is dominated by the hydrogen modes, with librational and bending modes that are quite similar to ice, supporting the structural model that the water intercalates and forms ice-like layers in the superconductor.Comment: 14 pages, 7 figures, Phys. Rev. B (in press). Minor changes + two figures removed as requested by refere
    corecore