107 research outputs found

    Circadian function in patients with advanced non-small-cell lung cancer

    Get PDF
    This study aimed to evaluate whether patients with advanced non-small-cell lung cancer experience disrupted rest–activity daily rhythms, poor sleep quality, weakness, and maintain attributes that are linked to circadian function such as fatigue. This report describes the rest–activity patterns of 33 non-small-cell lung cancer patients who participated in a randomised clinical trial evaluating the benefits of melatonin. Data are reported on circadian function, health-related quality of life (QoL), subjective sleep quality, and anxiety/depression levels prior to randomisation and treatment. Actigraphy data, an objective measure of circadian function, demonstrated that patients' rest–activity circadian function differs significantly from control subjects. Our patients reported poor sleep quality and high levels of fatigue. Ferrans and Powers QoL Index instrument found a high level of dissatisfaction with health-related QoL. Data from the European Organization for Research and Treatment for Cancer reported poor capacity to fulfil the activities of daily living. Patients studied in the hospital during or near chemotherapy had significantly more abnormal circadian function than those studied in the ambulatory setting. Our data indicate that measurement of circadian sleep/activity dynamics should be accomplished in the outpatient/home setting for a minimum of 4–7 circadian cycles to assure that they are most representative of the patients' true condition. We conclude that the daily sleep/activity patterns of patients with advanced lung cancer are disturbed. These are accompanied by marked disruption of QoL and function. These data argue for investigating how much of this poor functioning and QoL are actually caused by this circadian disruption, and, whether behavioural, light-based, and or pharmacologic strategies to correct the circadian/sleep activity patterns can improve function and QoL

    Peripheral electrical nerve stimulation and rest-activity rhythm in Alzheimer's disease

    Get PDF
    Rest-activity rhythm disruption is a prominent clinical feature of Alzheimer's disease (AD). The origin of the altered rest-activity rhythm is believed to be degeneration of the suprachiasmatic nucleus (SCN). In accordance with the 'use it or lose it' hypothesis of Swaab [Neurobiol Aging 1991, 12: 317-324] stimulation of the SCN may prevent age-related loss of neurons and might reactivate nerve cells that are inactive but not lost. Previous studies with relatively small sample sizes have demonstrated positive effects of peripheral electrical nerve stimulation on the rest-activity rhythm in AD patients. The present randomized, placebo-controlled, parallel-group study was meant to replicate prior findings of electrical stimulation in AD in a substantially larger group of AD patients. The experimental group (n = 31) received peripheral electrical nerve stimulation and the placebo group (n = 31) received sham stimulation. Effects of the intervention on the rest-activity rhythm were assessed by using wrist-worn actigraphs. Near-significant findings on the rest-activity rhythm partially support the hypothesis that neuronal stimulation enhances the rest-activity rhythm in AD patients. Interestingly, post-hoc analyses revealed significant treatment effects in a group of patients who were not using acetylcholinesterase inhibitors concomitantly. We conclude that more research is needed before firm general conclusions about the effectiveness of electrical stimulation as a symptomatic treatment in AD can be drawn. In addition, the present post-hoc findings indicate that future studies on non-pharmacological interventions should take medication use into account

    Circadian Phase Resetting via Single and Multiple Control Targets

    Get PDF
    Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness

    A New Integrated Variable Based on Thermometry, Actimetry and Body Position (TAP) to Evaluate Circadian System Status in Humans

    Get PDF
    The disruption of the circadian system in humans has been associated with the development of chronic illnesses and the worsening of pre-existing pathologies. Therefore, the assessment of human circadian system function under free living conditions using non-invasive techniques needs further research. Traditionally, overt rhythms such as activity and body temperature have been analyzed separately; however, a comprehensive index could reduce individual recording artifacts. Thus, a new variable (TAP), based on the integrated analysis of three simultaneous recordings: skin wrist temperature (T), motor activity (A) and body position (P) has been developed. Furthermore, we also tested the reliability of a single numerical index, the Circadian Function Index (CFI), to determine the circadian robustness. An actimeter and a temperature sensor were placed on the arm and wrist of the non-dominant hand, respectively, of 49 healthy young volunteers for a period of one week. T, A and P values were normalized for each subject. A non-parametric analysis was applied to both TAP and the separate variables to calculate their interdaily stability, intradaily variability and relative amplitude, and these values were then used for the CFI calculation. Modeling analyses were performed in order to determine TAP and CFI reliability. Each variable (T, A, P or TAP) was independently correlated with rest-activity logs kept by the volunteers. The highest correlation (r = −0.993, p<0.0001), along with highest specificity (0.870), sensitivity (0.740) and accuracy (0.904), were obtained when rest-activity records were compared to TAP. Furthermore, the CFI proved to be very sensitive to changes in circadian robustness. Our results demonstrate that the integrated TAP variable and the CFI calculation are powerful methods to assess circadian system status, improving sensitivity, specificity and accuracy in differentiating activity from rest over the analysis of wrist temperature, body position or activity alone

    Effects of circadian disruption on physiology and pathology: from bench to clinic (and back)

    Get PDF
    Nested within the hypothalamus, the suprachiasmatic nuclei (SCN) represent a central biological clock that regulates daily and circadian (i.e., close to 24 h) rhythms in mammals. Besides the SCN, a number of peripheral oscillators throughout the body control local rhythms and are usually kept in pace by the central clock. In order to represent an adaptive value, circadian rhythms must be entrained by environmental signals or zeitgebers, the main one being the daily light?dark (LD) cycle. The SCN adopt a stable phase relationship with the LD cycle that, when challenged, results in abrupt or chronic changes in overt rhythms and, in turn, in physiological, behavioral, and metabolic variables. Changes in entrainment, both acute and chronic, may have severe consequences in human performance and pathological outcome. Indeed, animal models of desynchronization have become a useful tool to understand such changes and to evaluate potential treatments in human subjects. Here we review a number of alterations in circadian entrainment, including jet lag, social jet lag (i.e., desynchronization between body rhythms and normal time schedules), shift work, and exposure to nocturnal light, both in human subjects and in laboratory animals. Finally, we focus on the health consequences related to circadian/entrainment disorders and propose a number of approaches for the management of circadian desynchronization.Fil: Chiesa, Juan José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duhart, José Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casiraghi, Leandro Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paladino, Natalia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bussi, Ivana Leda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andrés. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Effect of walking on circadian rhythms and sleep quality of patients with lung cancer: A randomised controlled trial

    Get PDF
    Background:Sleep disturbances and poor rest-activity rhythms, which can reduce the quality of life, are highly prevalent among patients with lung cancer.Methods:This trial investigated the effects of a 12-week exercise intervention including home-based walking exercise training and weekly exercise counseling on 111 lung cancer patients. Participants were randomly allocated to receive the intervention or usual-care. Outcomes included objective sleep (total sleep time, TST; sleep efficiency, SE; sleep onset latency, SOL; and wake after sleep onset, WASO), subjective sleep (Pittsburgh Sleep Quality Index, PSQI), and rest-activity rhythms (r24 and I<O). Outcomes were assessed at baseline and 3 and 6 months after intervention.Results:The PSQI (Wald χ 2 =15.16, P=0.001) and TST (Wald χ 2 =7.59, P=0.023) of the patients in the exercise group significantly improved 3 and 6 months after intervention. The moderating effect of I<O on TST was significant (β of group × I<O=3.70, P=0.032).Conclusions:The walking program is an effective intervention for improving the subjective and objective sleep quality of lung cancer patients and can be considered an optional component of lung cancer rehabilitation.Link_to_subscribed_fulltex
    corecore