18,203 research outputs found
Fourier Eigenfunctions, Uncertainty Gabor Principle and Isoresolution Wavelets
Shape-invariant signals under Fourier transform are investigated leading to a
class of eigenfunctions for the Fourier operator. The classical uncertainty
Gabor-Heisenberg principle is revisited and the concept of isoresolution in
joint time-frequency analysis is introduced. It is shown that any Fourier
eigenfunction achieve isoresolution. It is shown that an isoresolution wavelet
can be derived from each known wavelet family by a suitable scaling.Comment: 6 pages, XX Simp\'osio Bras. de Telecomunica\c{c}\~oes, Rio de
Janeiro, Brazil, 2003. Fixed typo
Chaos and a Resonance Mechanism for Structure Formation in Inflationary Models
We exhibit a resonance mechanism of amplification of density perturbations in
inflationary mo-dels, using a minimal set of ingredients (an effective
cosmological constant, a scalar field minimally coupled to the gravitational
field and matter), common to most models in the literature of inflation. This
mechanism is based on the structure of homoclinic cylinders, emanating from an
unstable periodic orbit in the neighborhood of a saddle-center critical point,
present in the phase space of the model. The cylindrical structure induces
oscillatory motions of the scales of the universe whenever the orbit visits the
neighborhood of the saddle-center, before the universe enters a period of
exponential expansion. The oscillations of the scale functions produce, by a
resonance mechanism, the amplification of a selected wave number spectrum of
density perturbations, and can explain the hierarchy of scales observed in the
actual universe. The transversal crossings of the homoclinic cylinders induce
chaos in the dynamics of the model, a fact intimately connected to the
resonance mechanism occuring immediately before the exit to inflation.Comment: 4 pages. This essay received an Honorable Mention from the Gravity
Research Foundation, 1998-Ed. To appear in Mod. Phys. Lett.
Strong evidences for a nonextensive behavior of the rotation period in Open Clusters
Time-dependent nonextensivity in a stellar astrophysical scenario combines
nonextensive entropic indices derived from the modified Kawaler's
parametrization, and , obtained from rotational velocity distribution. These
's are related through a heuristic single relation given by , where is the cluster age. In a nonextensive
scenario, these indices are quantities that measure the degree of
nonextensivity present in the system. Recent studies reveal that the index
is correlated to the formation rate of high-energy tails present in the
distribution of rotation velocity. On the other hand, the index is
determined by the stellar rotation-age relationship. This depends on the
magnetic field configuration through the expression , where
and denote the saturation level of the star magnetic field and its
topology, respectively. In the present study, we show that the connection
is also consistent with 548 rotation period data for single
main-sequence stars in 11 Open Clusters aged less than 1 Gyr. The value of
2.5 from our unsaturated model shows that the mean magnetic field
topology of these stars is slightly more complex than a purely radial field.
Our results also suggest that stellar rotational braking behavior affects the
degree of anti-correlation between and cluster age . Finally, we suggest
that stellar magnetic braking can be scaled by the entropic index .Comment: 6 pages and 2 figures, accepted to EPL on October 17, 201
Demandas tecnológicas da agricultura familiar em Goiás.
De acordo com prospecção de demandas junto e com os agricultores familiares, foram identificadas a seguintes tecnologias: adubação plantio e cobertura incorreta, baixa produtividade, baixo uso de sementes, controle fitossanitário inadequado, falta plantio direto e uso inadequado de fertilizantesbitstream/item/46249/1/goias.pd
- …