58 research outputs found

    Direct reconstruction of dark energy

    Full text link
    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new non-parametric method which can accurately reconstruct a wide variety of dark energy behaviour with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10-20 % at redshifts z<1 using just SNAP-quality data.Comment: 5 pages, 4 figures. v2 has added refs plus minor changes. To appear in PR

    Interaction between gravitational waves and plasma waves in the Vlasov description

    Full text link
    The nonlinear interaction between electromagnetic, electrostatic and gravitational waves in a Vlasov plasma is reconsidered. By using a orthonormal tetrad description the three-wave coupling coefficients are computed. Comparing with previous results, it is found that the present theory leads to algebraic expression that are much reduced, as compared to those computed using a coordinate frame formalism. Furthermore, here we calculate the back-reaction on the gravitational waves, and a simple energy conservation law is deduced in the limit of a cold plasma.Comment: 9 pages, uses jpp.cl

    Comparisons of Meso-Scale Air Pollution Dispersion Modelling of S02, N02 and 03 Using Regional-Scale Monitoring Results

    Get PDF
    Results of a regional-scale monitoring campaign were compared with two meso-scale to sub-continental modelling studies, for S02 and N02 and 03 respectively (Fourie, 2006, Zunckel et al., 2006, van Tienhoven et al., 2006, Van Tienhoven and Zunckel, 2004). However, a direct validation of the monitored results with modelled results could not be carried out, as available modelling studies dealt with different periods from the monitoring study. For this study, three monitoring sites were selected for comparison with modelling results. These sites were strategically selected to be representative of the entire region. Site Elandsfontein in the centre of the industrial Highveld, site Amersfoort, downwind from the central pollution source region and site Louis Trichardt, a remote site. Sulphur, nitrogen and ozone species comparisons were considered in turn. The comparisons were carried out for equivalent annual (and seasonal) cycles. The compa risons produced mixed results. For sulphur and nitrogen species in most cases, depending on site and season, modelling results ranged between significant underestimates to overestimates. Ozone modelling almost always overestimated the concentrations compared to the measured results. Despite several limiting factors, constraining the reliability of the comparisons between the modelled and measured results, they were important as the distribution of the gases showed patterns that imply understanding of the source and fate of these pollutants. The uncertainty in the magnitude of the model inaccuracies as well as margin of error of the measured data remained. Thus a modelling validation is recommended using the concurrent period with fewer uncertainties

    Cosmological implications of the KATRIN experiment

    Full text link
    The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put unprecedented constraints on the absolute mass of the electron neutrino, \mnue. In this paper we investigate how this information on \mnue will affect our constraints on cosmological parameters. We consider two scenarios; one where \mnue=0 (i.e., no detection by KATRIN), and one where \mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect estimates of some important cosmological parameters significantly. For example, the significance of ns<1n_s<1 and the inferred value of ΩΛ\Omega_\Lambda depend on the results from the KATRIN experiment.Comment: 13 page

    The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations

    Full text link
    Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in addition to the dominant adiabatic mode. We find that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different harmonics. These harmonics couple differently to Silk damping, altering the form and evolution of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the scale on which the sound waves imprint onto the baryon distribution, which is used as the standard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discuss these effects in detail and show how more general initial conditions impact our interpretation of cosmological data in dark energy studies. We find that the inclusion of these additional isocurvature modes leads to an increase in the Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT experiments respectively when considered in conjunction with Planck data. We also show that the incorrect assumption of adiabaticity has the potential to bias our estimates of the dark energy parameters by 3σ3\sigma (1σ1\sigma) for a single correlated isocurvature mode, and up to 8σ8\sigma (3σ3\sigma) for three correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We find that the use of the large scale structure data in conjunction with CMB data improves our ability to measure the contributions of different modes to the initial conditions by as much as 100% for certain modes in the fully correlated case.Comment: 20 pages, 17 figure

    Cosmological constraints on neutrino plus axion hot dark matter

    Full text link
    We use observations of the cosmological large-scale structure to derive limits on two-component hot dark matter consisting of mass-degenerate neutrinos and hadronic axions, both components having velocity dispersions corresponding to their respective decoupling temperatures. We restrict the data samples to the safely linear regime, in particular excluding the Lyman-alpha forest. Using standard Bayesian inference techniques we derive credible regions in the two-parameter space of m_a and sum(m_nu). Marginalising over sum(m_nu) provides m_a < 1.2 eV (95% C.L.). In the absence of axions the same data and methods give sum(m_nu) < 0.65 eV (95% C.L.). We also derive limits on m_a for a range of axion-pion couplings up to one order of magnitude larger or smaller than the hadronic value.Comment: 13 pages, 2 figures, uses iopart.cl

    Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy

    Full text link
    Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing cosmological constant Λ\Lambda, we investigate how the presence of a local spherically-symmetric inhomogeneity can affect apparent cosmological observables, such as the deceleration parameter or the effective equation of state of dark energy (DE), derived from the luminosity distance under the assumption that the real space-time is exactly homogeneous and isotropic. The presence of a local underdensity is found to produce apparent phantom behavior of DE, while a locally overdense region leads to apparent quintessence behavior. We consider relatively small large scale inhomogeneities which today are not linear and could be seeded by primordial curvature perturbations compatible with CMB bounds. Our study shows how observations in an inhomogeneous Λ\LambdaCDM universe with initial conditions compatible with the inflationary beginning, if interpreted under the wrong assumption of homogeneity, can lead to the wrong conclusion about the presence of "fake" evolving dark energy instead of Λ\Lambda.Comment: 22 pages, 19 figures,Final version to appear in European Physical Journal

    Dynamical Dark Energy or Simply Cosmic Curvature?

    Get PDF
    We show that the assumption of a flat universe induces critically large errors in reconstructing the dark energy equation of state at z>~0.9 even if the true cosmic curvature is very small, O(1%) or less. The spuriously reconstructed w(z) shows a range of unusual behaviour, including crossing of the phantom divide and mimicking of standard tracking quintessence models. For 1% curvature and LCDM, the error in w grows rapidly above z~0.9 reaching (50%,100%) by redshifts of (2.5,2.9) respectively, due to the long cosmological lever arm. Interestingly, the w(z) reconstructed from distance data and Hubble rate measurements have opposite trends due to the asymmetric influence of the curved geodesics. These results show that including curvature as a free parameter is imperative in any future analyses attempting to pin down the dynamics of dark energy, especially at moderate or high redshifts.Comment: 5 pages, 2 figures. To appear in JCA
    • …
    corecore