39 research outputs found
Phase effects on the masking of speech by harmonic complexes: Variations with level
Speech reception thresholds were obtained in normally hearing listeners for sentence targets masked by harmonic complexes constructed with different phase relationships. Maskers had either a constant fundamental frequency (F0), or had F0 changing over time, following a pitch contour extracted from natural speech. The median F0 of the target speech was very similar to that of the maskers. In experiment 1 differences in the masking produced by Schroeder positive and Schroeder negative phase complexes were small (around 1.5 dB) for moderate levels [60 dB sound pressure level (SPL)], but increased to around 6 dB for maskers at 80 dB SPL. Phase effects were typically around 1.5 dB larger for maskers that had naturally varying F0 contours than for maskers with constant F0. Experiment 2 showed that shaping the long-term spectrum of the maskers to match the target speech had no effect. Experiment 3 included additional phase relationships at moderate levels and found no effect of phase. Therefore, the phase relationship within harmonic complexes appears to have only minor effects on masking effectiveness, at least at moderate levels, and when targets and maskers are in the same F0 range
Universality in Systems with Power-Law Memory and Fractional Dynamics
There are a few different ways to extend regular nonlinear dynamical systems
by introducing power-law memory or considering fractional
differential/difference equations instead of integer ones. This extension
allows the introduction of families of nonlinear dynamical systems converging
to regular systems in the case of an integer power-law memory or an integer
order of derivatives/differences. The examples considered in this review
include the logistic family of maps (converging in the case of the first order
difference to the regular logistic map), the universal family of maps, and the
standard family of maps (the latter two converging, in the case of the second
difference, to the regular universal and standard maps). Correspondingly, the
phenomenon of transition to chaos through a period doubling cascade of
bifurcations in regular nonlinear systems, known as "universality", can be
extended to fractional maps, which are maps with power-/asymptotically
power-law memory. The new features of universality, including cascades of
bifurcations on single trajectories, which appear in fractional (with memory)
nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201
Spike-Timing-Based Computation in Sound Localization
Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination) in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal
Predictions of Speech Intelligibility with a Model of the Normal and Impaired Auditory-periphery
A fall-off in speech intelligibility at higher-than-normal presentation levels has been observed for listeners with and without hearing loss. Speech intelligibility predictors based on the acoustic signal properties, such as th