135,583 research outputs found
Evidence for very strong electron-phonon coupling in YBa_{2}Cu_{3}O_{6}
From the observed oxygen-isotope shift of the mid-infrared two-magnon
absorption peak of YBaCuO, we evaluate the oxygen-isotope
effect on the in-plane antiferromagnetic exchange energy . The exchange
energy in YBaCuO is found to decrease by about 0.9% upon
replacing O by O, which is slightly larger than that (0.6%) in
LaCuO. From the oxygen-isotope effects, we determine the lower
limit of the polaron binding energy, which is about 1.7 eV for
YBaCuO and 1.5 eV for LaCuO, in quantitative
agreement with angle-resolved photoemission data, optical conductivity data,
and the parameter-free theoretical estimate. The large polaron binding energies
in the insulating parent compounds suggest that electron-phonon coupling should
also be strong in doped superconducting cuprates and may play an essential role
in high-temperature superconductivity.Comment: 4 pages, 1 figur
Many-core compiler fuzzing
We address the compiler correctness problem for many-core systems through novel applications of fuzz testing to OpenCL compilers. Focusing on two methods from prior work, random differential testing and testing via equivalence modulo inputs (EMI), we present several strategies for random generation of deterministic, communicating OpenCL kernels, and an injection mechanism that allows EMI testing to be applied to kernels that otherwise exhibit little or no dynamically-dead code. We use these methods to conduct a large, controlled testing campaign with respect to 21 OpenCL (device, compiler) configurations, covering a range of CPU, GPU, accelerator, FPGA and emulator implementations. Our study provides independent validation of claims in prior work related to the effectiveness of random differential testing and EMI testing, proposes novel methods for lifting these techniques to the many-core setting and reveals a significant number of OpenCL compiler bugs in commercial implementations
Effects of ion irradiation on conductivity of CrSi_2 thin films
Electrical resistivity measurements are used to study damage in CrSi_2 thin films induced by Ne, Ar, or Xe ion irradiation over a fluence range of 10^(10)–10^(15) ions cm^(−2). Irradiation produces a factor of 5–12 increase in film conductivity at the higher fluences. The influence of defect generation and recombination is evident. We speculate that formation of a compound defect is a dominant factor enhancing film conductivity. A temperature dependence at low fluences is reported and tentatively identified
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
Modern astronomical data on galaxy and cosmological scales have revealed
powerfully the existence of certain dark sectors of fundamental physics, i.e.,
existence of particles and fields outside the standard models and inaccessible
by current experiments. Various approaches are taken to modify/extend the
standard models. Generic theories introduce multiple de-coupled fields A, B, C,
each responsible for the effects of DM (cold supersymmetric particles), DE
(Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some
theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C
belong to decoupled sectors of physics. MOND-like MG and Cold DM are often
taken as opposite frameworks, e.g. in the debate around the Bullet Cluster.
Here we argue that these ad hoc divisions of sectors miss important clues from
the data. The data actually suggest that the physics of all dark sectors is
likely linked together by a self-interacting oscillating field, which governs a
chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It
is timely to consider an interdisciplinary approach across all semantic
boundaries of dark sectors, treating the dark stress as one identity, hence
accounts for several "coincidences" naturally.Comment: 12p, Proceedings to the 6-th Int. Conf. of Gravitation and Cosmology.
Neutrino section expande
Oxygen-isotope effect on the in-plane penetration depth in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} as revealed by muon-spin rotation
The oxygen-isotope (^16O/^18O) effect (OIE) on the in-plane penetration depth
in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} was studied by
muon-spin rotation. A pronounced OIE on was observed
with a relative isotope shift of
=-5(2)% for x =0.3 and -9(2)% for
x=0.4. It arises mainly from the oxygen-mass dependence of the in-plane
effective mass . The OIE exponents of T_{c} and of
exhibit a relation that appears to be generic for
cuprate superconductors.Comment: 4 pages, 4 eps figures, RevTex
- …