1,586 research outputs found

    Transient Zitterbewegung of charge carriers in graphene and carbon nanotubes

    Full text link
    Observable effects due to trembling motion (Zitterbewegung, ZB) of charge carriers in bilayer graphene, monolayer graphene and carbon nanotubes are calculated. It is shown that, when the charge carriers are prepared in the form of gaussian wave packets, the ZB has a transient character with the decay time of femtoseconds in graphene and picoseconds in nanotubes. Analytical results for bilayer graphene allow us to investigate phenomena which accompany the trembling motion. In particular, it is shown that the transient character of ZB in graphene is due to the fact that wave subpackets related to positive and negative electron energies move in opposite directions, so their overlap diminishes with time. This behavior is analogous to that of the wave packets representing relativistic electrons in a vacuum.Comment: 7 pages, 3 figures, augmented versio

    Zitterbewegung of nearly-free and tightly bound electrons in solids

    Full text link
    We show theoretically that nonrelativistic nearly-free electrons in solids should experience a trembling motion (Zitterbewegung, ZB) in absence of external fields, similarly to relativistic electrons in vacuum. The Zitterbewegung is directly related to the influence of periodic potential on the free electron motion. The frequency of ZB is ωEg/\omega\approx E_g/\hbar, where EgE_g is the energy gap. The amplitude of ZB is determined by the strength of periodic potential and the lattice period and it can be of the order of nanometers. We show that the amplitude of ZB does not depend much on the width of the wave packet representing an electron in real space. An analogue of the Foldy-Wouthuysen transformation, known from relativistic quantum mechanics, is introduced in order to decouple electron states in various bands. We demonstrate that, after the bands are decoupled, electrons should be treated as particles of a finite size. In contrast to nearly-free electrons we consider a two-band model of tightly bound electrons. We show that also in this case the electrons should experience the trembling motion. It is concluded that the phenomenon of Zitterbewegung of electrons in crystalline solids is a rule rather than an exception.Comment: 22 pages, 6 figures Published version, minor changes mad
    corecore