24 research outputs found

    Methods for image-based 3-D modeling using color and depth cameras

    Full text link
    Abstract This work addresses the problems related to three-dimensional modeling of scenes and objects and model evaluation. The work is divided into four main parts. At first, the work concentrates on purely image-based reconstruction while the second part presents a modeling pipeline based on an active depth sensor. Then, the work introduces methods for producing surface meshes from point clouds, and finally, a novel approach for model evaluation is presented. In the first part, this work proposes a multi-view stereo (MVS) reconstruction method that takes a set of images as an input and outputs a model represented as a point cloud. The method is based on match propagation, where a set of initial corresponding points between images is expanded iteratively into larger regions by searching new correspondences in the spatial neighborhood of the existing ones. The expansion is implemented using a best-first strategy, where the most reliable match is always expanded first. The method produces comparable results with the state-of-the-art but significantly faster. In the second part, this work presents a method that merges a sequence of depth maps into a single non-redundant point cloud. In the areas, where the depth maps overlap, the method fuses points together by giving more weight to points which seem to be more reliable. The method overcomes its predecessor both in accuracy and robustness. In addition, this part introduces a method for depth camera calibration. The method develops on an existing calibration approach which was originally designed for the first generation Microsoft Kinect device. The third part of the thesis addresses the problem of converting the point clouds to surface meshes. The work briefly reviews two well-known approaches and compares their ability to produce sparse mesh models without sacrificing accuracy. Finally, the fourth part of this work describes the development of a novel approach for performance evaluation of reconstruction algorithms. In addition to the accuracy and completeness, which are the metrics commonly used in existing evaluation benchmarks, the method also takes the compactness of the models into account. The metric enables the evaluation of the accuracy-compactness trade-off of the models.Tiivistelmä Tässä työssä käsitellään näkymän tai esineen kolmiulotteista mallintamista ja tulosten laadun arviointia. Työ on jaettu neljään osaan. Ensiksi keskitytään pelkästään valokuvia hyödyntävään mallinnukseen ja sitten esitellään menetelmä syvyyskamerapohjaiseen mallinnukseen. Kolmas osa kuvaa menetelmiä verkkomallien luomiseen pistepilvestä ja lopuksi esitellään menetelmä mallien laadun arviointiin. Ensimmäisessä osassa esitellään usean kuvan stereoon perustuva mallinnusmenetelmä, joka saa syötteenä joukon valokuvia ja tuottaa kuvissa näkyvästä kohteesta pistepilvimallin. Menetelmä perustuu vastinpisteiden laajennukseen, jossa kuvien välisiä pistevastaavuuksia laajennetaan iteratiivisesti suuremmiksi vastinalueiksi hakemalla uusia vastinpistepareja jo löydettyjen läheisyydestä. Laajennus käyttää paras ensin -menetelmää, jossa luotettavin pistevastaavuus laajennetaan aina ensin. Menetelmä tuottaa vertailukelpoisia tuloksia johtaviin menetelmiin verrattuna, mutta merkittävästi nopeammin. Toisessa osassa esitellään menetelmä, joka yhdistää joukon syvyyskameralla kaapattuja syvyyskarttoja yhdeksi pistepilveksi. Alueilla, jotka sisältävät syvyysmittauksia useasta syvyyskartasta, päällekkäiset mittaukset yhdistetään painottamalla luotettavammalta vaikuttavaa mittausta. Menetelmä on tarkempi kuin edeltäjänsä ja toimii paremmin kohinaisemmalla datalla. Lisäksi tässä osassa esitellään menetelmä syvyyskameran kalibrointiin. Menetelmä kehittää jo olemassa olevaa kalibrointityökalua, joka alun perin kehitettiin ensimmäisen sukupolven Microsoft Kinect laitteelle. Väitöskirjan kolmas osa käsittelee pintamallin luomista pistepilvestä. Työ esittelee kaksi hyvin tunnettua menetelmää ja vertailee niiden kykyä luoda harvoja, mutta edelleen tarkkoja malleja. Lopuksi esitellään uudenlainen menetelmä mallinnusmenetelmien arviointiin. Tarkkuuden ja kattavuuden lisäksi, jotka ovat yleisimmät arvioinnissa käytetyt metriikat, menetelmä ottaa huomioon myös mallin pistetiheyden. Metriikan avulla on mahdollista arvioida kompromissia mallin tarkkuuden ja tiheyden välillä

    Robust and practical depth map fusion for time-of-flight cameras

    Full text link
    Abstract Fusion of overlapping depth maps is an important part in many 3D reconstruction pipelines. Ideally fusion produces an accurate and nonredundant point cloud robustly even from noisy and partially poorly registered depth maps. In this paper, we improve an existing fusion algorithm towards a more ideal solution. Our method builds a nonredundant point cloud from a sequence of depth maps so that the new measurements are either added to the existing point cloud if they are in an area which is not yet covered or used to refine the existing points. The method is robust to outliers and erroneous depth measurements as well as small depth map registration errors due to inaccurate camera poses. The results show that the method overcomes its predecessor both in accuracy and robustness

    Accurate 3-D reconstruction with RGB-D cameras using depth map fusion and pose refinement

    Full text link
    Abstract Depth map fusion is an essential part in both stereo and RGB-D based 3- D reconstruction pipelines. Whether produced with a passive stereo reconstruction or using an active depth sensor, such as Microsoft Kinect, the depth maps have noise and may have poor initial registration. In this paper, we introduce a method which is capable of handling outliers, and especially, even significant registration errors. The proposed method first fuses a sequence of depth maps into a single non-redundant point cloud so that the redundant points are merged together by giving more weight to more certain measurements. Then, the original depth maps are re-registered to the fused point cloud to refine the original camera extrinsic parameters. The fusion is then performed again with the refined extrinsic parameters. This procedure is repeated until the result is satisfying or no significant changes happen between iterations. The method is robust to outliers and erroneous depth measurements as well as even significant depth map registration errors due to inaccurate initial camera poses

    Implementation of control system and tracking objects in a quadcopter system

    Full text link
    Abstract In this paper, we implement a quadcopter assembly with control and navigation module. The project also includes the design of the control panel for the operator which consists of a set of the microcontroller and the glove equipped with sensors and buttons. The panel has a touch screen which displays current parameters such as vehicle status, including information about orientation and geographical coordinates. The concept of quadcopter control is based on the movement of the operator hand. In addition, we have included the object detection for detecting the objects from the quadcopter view of point. To detect an object, we need to have some idea of where the object may be and how the image is divided into segments. It creates a kind of chicken and egg problem, where we must recognize the shape (and class) of the object knowing its location and recognize the location of the object knowing its shape. Some visual characteristics such as clothing and the human face, they can be part of the same subject, but it is difficult to recognize this without recognizing the object first

    Advanced practice nurses’ experiences of evidence-based practice:a qualitative study

    Full text link
    Abstract Evidence-based practice (EBP) has been shown to improve patient safety as well as quality of care. Advanced practice nurses (APNs) have a vital role in the implementation of EBP. This study aimed to describe APNs’ experiences of EBP implementation. The study was a descriptive qualitative study and data were collected between May and August 2019 through interviews with APNs (n = 12). The data were analyzed using inductive content analysis. The study was reported according to COREQ guidelines. The responses were divided into four main categories: EBP in clinical nursing; EBP leadership; implementation of supporting structures for EBP; and EBP in APNs’ work. APNs experienced: that the realization of EBP varied in clinical nursing, that there was a need for development in the leadership of EBP, variation in nurse leaders’ competence in EBP leadership, and a lack of resources for EBP

    Better Segmentation of Enterprise Modelling Governance through Usage Perspectives

    Full text link
    International audienceEnterprise modelling is an endeavor that involves many different stakeholders in a company and requires a long-term approach to reap major benefits. Due to their differing main tasks the stakeholders frequently pursue deviating goals. Therefore, an appropriate management of the stakeholders is considered a success factor for enterprise modelling. The goals of the stakeholders in respect of an enterprise model and their role in the modelling process are crucial for this distinction. The differentiation can be facilitated by generic goals and a scheme that accounts for influences like variants in the size of companies and the impact of enterprise modelling on business. The application of the outlined procedure is exemplified with an illustrative case of a chemical supplier
    corecore