28 research outputs found

    Stepwise refinement of heap-manipulating code in Chalice

    Get PDF
    Stepwise refinement is a well-studied technique for developing a program from an abstract description to a concrete implementation. This paper describes a system with automated tool support for refinement, powered by a state-of-the-art verification engine that uses an SMT solver. Unlike previous refinement systems, users of the presented system interact only via declarations in the programming language. Another aspect of the system is that it accounts for dynamically allocated objects in the heap, so that data representations in an abstract program can be refined into ones that use more objects. Finally, the system uses a language with familiar imperative features, including sequential composition, loops, and recursive calls, offers a syntax with skeletons for describing program changes between refinements, and provides a mechanism for supplying witnesses when refining non-deterministic programs

    Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Get PDF
    The water-based liquid scintillator (WbLS) is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining theCerenkov rings and scintillation light, aswell as the total cost reduction compared to pure liquid scintillator (LS).The independent light yieldmeasurement analysis for the light yield measurements using three different proton beamenergies (210MeV, 475MeV, and 2000MeV) for water, two different WbLS formulations (0.4% and 0.99%), and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ∼100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieve

    Random Number Hardware Generator Using Geiger‐Mode Avalanche Photo Detector

    Get PDF
    This paper presents the physical concept and test results of sample data of the high-speed hardware true random number generator design based on typically used for High Energy Physics hardware. Main features of this concept are the high speed of the true random numbers generation (tens of Mbt/s), miniature size and estimated lower production cost. This allows the use of such a device not only in large companies and government offices but for the end-user data cryptography, in classrooms, in scientific Monte-Carlo simulations, computer games and any other place where large number of true random numbers is required. The physics of the operations principle of using a Geiger-mode avalanche photo detector is discussed and the high quality of the data collected is demonstrated

    New particle or dark matter decay discovery studying cosmic ray showers

    Get PDF
    In the field of High Energy Physics today there are several open topics that are left. The Higgs boson has been recently discovered, neutrino oscillations are being studied, and some hints of the dark matter have been detected as well. The large remaining mystery is the origin and the nature of the Ultra-high energy Cosmic Rays (UCR)

    Glass-based charged particle detector performance for Horizon-T EAS detector system

    Get PDF
    An implementation of a novel of glass-based detector with fast response and wide detection range is needed to increase resolution for ultra-high energy cosmic rays detection. Such detector has been designed and built for the Horizon-T detector system at Tien Shan high-altitude Science Station. The main characteristics, such as design, duration of the detector pulse and calibration of a single particle response are discussed.Comment: Simulation is used to assess glass detector performance. Simulation is validated first when compared to scintillator detector experimental measurements. Final results summarized in table. Updated May 2017 with calibrations updat

    New particle or dark matter decay discovery studying cosmic ray showers

    Get PDF
    In the field of High Energy Physics today there are several open topics that are left. The Higgs boson has been recently discovered, neutrino oscillations are being studied, and some hints of the dark matter have been detected as well. The large remaining mystery is the origin and the nature of the Ultra-high energy Cosmic Rays (UCR)

    Random Number Hardware Generator Using Geiger-Mode Avalanche Photo Detector

    Get PDF
    This paper presents the physical concept and test results of sample data of the high-speed hardware true random number generator design based on typically used for High Energy Physics hardware. Main features of this concept are the high speed of the true random numbers generation (tens of Mbt/s), miniature size and estimated lower production cost. This allows the use of such a device not only in large companies and government offices but for the end-user data cryptography, in classrooms, in scientific Monte-Carlo simulations, computer games and any other place where large number of true random numbers is required. The physics of the operations principle of using a Geiger-mode avalanche photo detector is discussed and the high quality of the data collected is demonstrated.Comment: updated 201

    Horizon-T Experiment Calibrations – MIP Signal from Scintillator and Glass Detectors

    Get PDF
    Horizon-T, a modern Extensive Air Showers (EAS) detector system, is constructed at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level in order to study in the energy range above 1016 eV coming from a wide range of zenith angles (0o - 85o). The detector includes eight charged particle detection points and a Vavilov-Cherenkov radiation detector. Each charged particle detector response is calibrated using single MIP (minimally ionizing particle) signal. The details of this calibration are provided in this article. This note is valid for data before March 2017 and will not be updated following any detector calibration and configuration changes as a large upgrade has been implemente
    corecore