39,645 research outputs found
Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks
With increase in ageing population, health care market keeps growing. There
is a need for monitoring of health issues. Wireless Body Area Network (WBAN)
consists of wireless sensors attached on or inside human body for monitoring
vital health related problems e.g, Electro Cardiogram (ECG), Electro
Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening
situations, timely sending of data is essential. For data to reach health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. Wireless Local
Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to health care center. Delay of data reaching each device is
calculated and represented graphically. Main aim of this paper is to calculate
delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
Observation of B+ ---> a(1)+(1260) K0 and B0 ---> a(1)-(1260) K+
We present branching fraction measurements of the decays B^{+} -> a1(1260)^{+} K^{0} and B^{0} to a1(1260)^{-} K^{+} with a1(1260)^{+} -> pi^{-} pi^{+} pi^{+}. The data sample corresponds to 383 million B B-bar pairs produced in e^{+}e^{-} annihilation through the Y(4S) resonance. We measure the products of the branching fractions:
B(B^{+}-> a1(1260)^{+} K^{0})B(a1(1260)^{+} -> pi^{-} pi^{+} pi^{+}) = (17.4 +/- 2.5 +/- 2.2) 10^{-6}
B(B^{0}-> a1(1260)^{-} K^{+})B(a1(1260)^{-} -> pi^{+} pi^{-} pi^{-}) = (8.2 +/- 1.5 +/- 1.2) 10^{-6}.
We also measure the charge asymmetries A_{ch}(B^{+} -> a1(1260)^{+} K^{0})= 0.12 +/- 0.11 +/- 0.02 and A_{ch}(B^{0} -> a1(1260)^{-} K^{+})= -0.16 +/- 0.12 +/- 0.01. The first uncertainty quoted is statistical and the second is systematic
Search for CP violation in the decays D0 ---> K- K+ and D0 ---> pi- pi+
We measure CP-violating asymmetries of neutral charmed mesons in the modes D0 --> K- K+ and D0 --> pi- pi+ with the highest precision to date by using D0 --> K- pi+ decays to correct detector asymmetries. An analysis of 385.8 fb-1 of data collected with the BaBar detector yields values of aCP(KK) = (0.00 +/- 0.34 (stat.) +/- 0.13 (syst.))% and aCP(pipi) = (-0.24 +/- 0.52 (stat.) +/- 0.22 (syst.))%, which agree with Standard Model prediction
Observation of the semileptonic decays B ---> D* tau- anti-nu(tau) and evidence for B ---> D tau- anti-nu(tau
We present measurements of the semileptonic decays B- --> D0 tau- nubar, B- --> D*0 tau- nubar, B0bar --> D+ tau- nubar, and B0bar --> D*+ tau- nubar, which are potentially sensitive to non--Standard Model amplitudes. The data sample comprises 232x10^6 Upsilon(4S) --> BBbar decays collected with the BaBar detector. From a combined fit to B- and B0bar channels, we obtain the branching fractions B(B --> D tau- nubar) = (0.86 +/- 0.24 +/- 0.11 +/- 0.06)% and B(B --> D* tau- nubar) = (1.62 +/- 0.31 +/- 0.10 +/- 0.05)% (normalized for the B0bar), where the uncertainties are statistical, systematic, and normalization-mode-related
Study of e+ e- ---> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 using initial state radiation with BABAR
We study the e+e- --> Lambda anti-Lambda gamma, Lambda anti-Sigma0 gamma, Sigma0 anti-Sigma0 gamma processes using 230 fb-1 of integrated luminosity collected by the BABAR detector at e+e- center-of-mass energy of 10.58 GeV.
From the analysis of the baryon-antibaryon mass spectra the cross sections for e+e- --> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 are measured in the dibaryon mass range from threshold up to 3 GeV/c^2. The ratio of electric and magnetic form factors, |G_E/G_M|, is measured for e+e- --> Lambda anti-Lambda, and limits on the relative phase between Lambda form factors are obtained. We also measure the J/psi --> Lambda anti-Lambda, Sigma0 anti-Sigma0 and psi(2S) --> Lambda anti-Lambda branching fractions
Measurements of Partial Branching Fractions for anti-B ---> X(u) l anti-nu and Determination of |V(ub)|
We present partial branching fractions for inclusive charmless semileptonic B decays Bbar --> X_u ell nubar, and the determination of the CKM matrix element |V_{ub}|. The analysis is based on a sample of 383 million Y(4S) decays into B Bbar pairs collected with the BaBar detector at the PEP-II e+ e- storage rings. We select events using either the invariant mass M_X of the hadronic system, the invariant mass squared, q^2, of the lepton and neutrino pair, the kinematic variable P_+ or one of their combinations. We then determine partial branching fractions in limited regions of phase space: Delta B = (1.18 +- 0.09_{stat.} +- 0.07_{sys.} +- 0.01_{theo.}) x 10^{-3} (M_X 8 GeV^2/c^4). Corresponding values of |V_{ub}| are extracted using several theoretical calculations
Seeking Optimum System Settings for Physical Activity Recognition on Smartwatches
Physical activity recognition (PAR) using wearable devices can provide valued
information regarding an individual's degree of functional ability and
lifestyle. In this regards, smartphone-based physical activity recognition is a
well-studied area. Research on smartwatch-based PAR, on the other hand, is
still in its infancy. Through a large-scale exploratory study, this work aims
to investigate the smartwatch-based PAR domain. A detailed analysis of various
feature banks and classification methods are carried out to find the optimum
system settings for the best performance of any smartwatch-based PAR system for
both personal and impersonal models. To further validate our hypothesis for
both personal (The classifier is built using the data only from one specific
user) and impersonal (The classifier is built using the data from every user
except the one under study) models, we tested single subject validation process
for smartwatch-based activity recognition.Comment: 15 pages, 2 figures, Accepted in CVC'1
SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks
In this work, we propose a reliable, power efficient and high throughput
routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop
topology to achieve minimum energy consumption and longer network lifetime. We
propose a cost function to select parent node or forwarder. Proposed cost
function selects a parent node which has high residual energy and minimum
distance to sink. Residual energy parameter balances the energy consumption
among the sensor nodes while distance parameter ensures successful packet
delivery to sink. Simulation results show that our proposed protocol maximize
the network stability period and nodes stay alive for longer period. Longer
stability period contributes high packet delivery to sink which is major
interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
- …