34,691 research outputs found

    An improved moving particle semi-implicit method for dam break simulation

    No full text
    Dam break is quite a common and hazard phenomenon in shipbuilding and ocean engineering. The objective of this study is to investigate dam break hydrodynamics with improved Moving Particle Semi-implicit method (MPS). Compared to traditional mesh methods, MPS is feasible to simulate surface flows with large deformation, however, during the simulation, the pressure oscillates violently, due to misjudgment of surface particles as well as particles gathering together. To modify these problems, a new arc method is applied to judge free surface particles, and a collision model is introduced to avoid particles from gathering together. Hydrostatic pressure is simulated by original and improved MPS. The results verify that improved MPS method is more effective. Based on these, dam break model is investigated with improved MPS

    Distinguishable RGE running effects between Dirac neutrinos and Majorana neutrinos with vanishing Majorana CP-violating phases

    Full text link
    In a novel parametrization of neutrino mixing and in the approximation of τ\tau-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tanβ\tan\beta, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.Comment: 12 pages, 5 figure

    The T2K Indication of Relatively Large theta_13 and a Natural Perturbation to the Democratic Neutrino Mixing Pattern

    Full text link
    The T2K Collaboration has recently reported a remarkable indication of the \nu_\mu -> \nu_e oscillation which is consistent with a relatively large value of \theta_{13} in the three-flavor neutrino mixing scheme. We show that it is possible to account for such a result of \theta_{13} by introducing a natural perturbation to the democratic neutrino mixing pattern, without or with CP violation. A testable correlation between \theta_{13} and \theta_{23} is predicted in this ansatz. We also discuss the Wolfenstein-like parametrization of neutrino mixing, and comment on other possibilities of generating sufficiently large \theta_{13} at the electroweak scale.Comment: RevTeX 8 page

    Active Ontology: An Information Integration Approach for Dynamic Information Sources

    Get PDF
    In this paper we describe an ontology-based information integration approach that is suitable for highly dynamic distributed information sources, such as those available in Grid systems. The main challenges addressed are: 1) information changes frequently and information requests have to be answered quickly in order to provide up-to-date information; and 2) the most suitable information sources have to be selected from a set of different distributed ones that can provide the information needed. To deal with the first challenge we use an information cache that works with an update-on-demand policy. To deal with the second we add an information source selection step to the usual architecture used for ontology-based information integration. To illustrate our approach, we have developed an information service that aggregates metadata available in hundreds of information services of the EGEE Grid infrastructure
    corecore