42,839 research outputs found

    Effects of density-dependent quark mass on phase diagram of three-flavor quark matter

    Full text link
    Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark msm_s is small, the strange quark matter remains stable unless the baryon density is very high. If msm_s is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.Comment: 4 figure

    Fluctuations in mixtures of lamellar- and nonlamellar-forming lipids

    Full text link
    We consider the role of nonlamellar-forming lipids in biological membranes by examining fluctuations, within the random phase approximation, of a model mixture of two lipids, one of which forms lamellar phases while the other forms inverted hexagonal phases. To determine the extent to which nonlamellar-forming lipids facilitiate the formation of nonlamellar structures in lipid mixtures, we examine the fluctuation modes and various correlation functions in the lamellar phase of the mixture. To highlight the role fluctuations can play, we focus on the lamellar phase near its limit of stability. Our results indicate that in the initial stages of the transition, undulations appear in the lamellae occupied by the tails, and that the nonlamellar-forming lipid dominates these undulations. The lamellae occupied by the head groups pinch off to make the tubes of the hexagonal phase. Examination of different correlations and susceptibilities makes quantitative the dominant role of the nonlamellar-forming lipids.Comment: 7 figures (better but larger in byte figures are available upon resuest), submitte

    X(1812) in Quarkonia-Glueball-Hybrid Mixing Scheme

    Full text link
    Recently a JPC=0++J^{PC}=0^{++} (X(1812)) state with a mass near the threshold of ω\omega and ϕ\phi has been observed by the BES collaboration in J/ψγωϕJ/\psi \to \gamma \omega \phi decay. It has been suggested that it is a IG=0+I^G = 0^+ state. If it is true, this state fits in a mixing scheme based on quarkonia, glueball and hybrid (QGH) very nicely where five physical states are predicted. Together with the known f0(1370)f_0(1370), f0(1500)f_0(1500), f0(1710)f_0(1710), and f0(1790)f_0(1790) states, X(1812) completes the five members in this family. Using known experimental data on these particles we determine the ranges of the mixing parameters and predict decay properties for X(1812). We also discuss some features which may be able to distinguish between four-quark and hybrid mixing schemes.Comment: 15 pages, 2 figures, 3 table

    Protein folding in hydrophobic-polar lattice model: a flexible ant colony optimization approach

    Get PDF
    This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms

    Exploring the Latest Union2 SNIa Dataset by Using Model-Independent Parametrization Methods

    Full text link
    We explore the cosmological consequences of the recently released Union2 sample of 557 Type Ia supernovae (SNIa). Combining this latest SNIa dataset with the Cosmic microwave background (CMB) anisotropy data from the Wilkinson Microwave Anisotropy Probe 7 year (WMAP7) observations and the baryon acoustic oscillation (BAO) results from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we measure the dark energy density function f(z)ρde(z)/ρde(0)f(z)\equiv \rho_{de}(z)/\rho_{de}(0) as a free function of redshift. Two model-independent parametrization methods (the binned parametrization and the polynomial interpolation parametrization) are used in this paper. By using the χ2\chi^2 statistic and the Bayesian information criterion, we find that the current observational data are still too limited to distinguish which parametrization method is better, and a simple model has advantage in fitting observational data than a complicated model. Moreover, it is found that all these parametrizations demonstrate that the Union2 dataset is still consistent with a cosmological constant at 1σ\sigma confidence level. Therefore, the Union2 dataset is different from the Constitution SNIa dataset, which more favors a dynamical dark energy.Comment: 11 pages, 8 figures, 2 tables, accepted for publication in PR
    corecore