9 research outputs found

    Exact solution of a 2D interacting fermion model

    Full text link
    We study an exactly solvable quantum field theory (QFT) model describing interacting fermions in 2+1 dimensions. This model is motivated by physical arguments suggesting that it provides an effective description of spinless fermions on a square lattice with local hopping and density-density interactions if, close to half filling, the system develops a partial energy gap. The necessary regularization of the QFT model is based on this proposed relation to lattice fermions. We use bosonization methods to diagonalize the Hamiltonian and to compute all correlation functions. We also discuss how, after appropriate multiplicative renormalizations, all short- and long distance cutoffs can be removed. In particular, we prove that the renormalized two-point functions have algebraic decay with non-trivial exponents depending on the interaction strengths, which is a hallmark of Luttinger-liquid behavior.Comment: 59 pages, 3 figures, v2: further references added; additional subsections elaborating mathematical details; additional appendix with details on the relation to lattice fermion

    A 2D Luttinger model

    Full text link
    A detailed derivation of a two dimensional (2D) low energy effective model for spinless fermions on a square lattice with local interactions is given. This derivation utilizes a particular continuum limit that is justified by physical arguments. It is shown that the effective model thus obtained can be treated by exact bosonization methods. It is also discussed how this effective model can be used to obtain physical information about the corresponding lattice fermion system.Comment: 36 pages, 3 figures; v2: 36 pages, 2 figures, minor corrections; v3: 38 pages, 2 figures, clarifications and minor corrections, adapted to follow-up paper arXiv:0907.127

    Recent air and ground temperature increases at Tarfala Research Station, Sweden

    No full text
    Long-term data records are essential to detect and understand environmental change, in particular in generally data-sparse high-latitude and high-altitude regions. Here, we analyse a 47-year air temperature record (1965–2011) at Tarfala Research Station (67° 54.7′N, 18° 36.7′E, 1135 m a.s.l.) in northern Sweden, and a nearby 11-year record of 100-m-deep ground temperature (2001–11; 1540 m a.s.l.). The air temperature record shows a mean annual air temperature of −3.5±0.9°C (±1 standard deviation σ) and a linear warming trend of ±0.042°C yr−1. The warming trend shows large month-to-month variations with the largest trend in January followed by October. Also, the number of days with positive mean daily temperatures and positive degree-day sums has increased during the last two decades compared to the previous period. Temperature lapse rates derived from the mean daily Tarfala record and an air temperature record at the borehole site average 4.5°C km−1 and tend to be higher in summer than in winter. Mean summer air temperatures at Tarfala explain 76% of the variance of the summer glacier mass balance of nearby Storglaciären. Consistent with the observed increase in Tarfala's air temperature, the ground temperature record shows significant permafrost warming with the largest trend (0.047°C yr−1) found at 20 m depth
    corecore