6,082 research outputs found
Almost structural completeness; an algebraic approach
A deductive system is structurally complete if its admissible inference rules
are derivable. For several important systems, like modal logic S5, failure of
structural completeness is caused only by the underivability of passive rules,
i.e. rules that can not be applied to theorems of the system. Neglecting
passive rules leads to the notion of almost structural completeness, that
means, derivablity of admissible non-passive rules. Almost structural
completeness for quasivarieties and varieties of general algebras is
investigated here by purely algebraic means. The results apply to all
algebraizable deductive systems.
Firstly, various characterizations of almost structurally complete
quasivarieties are presented. Two of them are general: expressed with finitely
presented algebras, and with subdirectly irreducible algebras. One is
restricted to quasivarieties with finite model property and equationally
definable principal relative congruences, where the condition is verifiable on
finite subdirectly irreducible algebras.
Secondly, examples of almost structurally complete varieties are provided
Particular emphasis is put on varieties of closure algebras, that are known to
constitute adequate semantics for normal extensions of S4 modal logic. A
certain infinite family of such almost structurally complete, but not
structurally complete, varieties is constructed. Every variety from this family
has a finitely presented unifiable algebra which does not embed into any free
algebra for this variety. Hence unification in it is not unitary. This shows
that almost structural completeness is strictly weaker than projective
unification for varieties of closure algebras
Global Regular Solutions to a Kelvin-Voigt Type Thermoviscoelastic System
A classical 3-D thermoviscoelastic system of Kelvin-Voigt type is considered.
The existence and uniqueness of a global regular solution is proved without
small data assumption. The existence proof is based on the successive
approximation method. The crucial part constitute a priori estimates on an
arbitrary finite time interval, which are derived with the help of the theory
of anisotropic Sobolev spaces with a mixed norm.Comment: 52 page
- …