504 research outputs found
Recommended from our members
Polyamide Nanocomposites for Selective Laser Sintering
Current polyamide 11 and 12 are lacking in fire retardancy and high strength/high
heat resistance characteristics for a plethora of finished parts that are desired and required
for performance driven applications. It is anticipated that nanomodification of polyamide
11 and 12 will result in enhanced polymer performance, i.e., fire retardancy, high strength
and high heat resistance for polyamide 11 and 12. It is expected that these findings will
expand the market opportunities for polyamide 11 and 12 resin manufacturers.
The objective of this research is to develop improved polyamide 11 and 12 polymers
with enhanced flame retardancy, thermal, and mechanical properties for selective laser
sintering (SLS) rapid manufacturing (RM). A nanophase was introduced into the
polyamide 11 and 12 via twin screw extrusion to provide improved material properties of
the polymer blends. Arkema RILSAN® polyamide 11 molding polymer pellets and
Degussa VESTAMID® L1670 polyamide 12 were examined with three types of
nanoparticles: chemically modified montmorillonite (MMT) organoclays, surface
modified nanosilica, and carbon nanofibers (CNFs) to create polyamide 11 and 12
nanocomposites.
Wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM)
were used to determine the degree of dispersion. Injection molded test specimens were
fabricated for physical, thermal, mechanical properties, and flammability tests. Thermal
stability of these polyamide 11 and 12 nanocomposites was examined by TGA.
Mechanical properties such as tensile, flexural, and elongation at break were measured.
Flammability properties were also obtained using the Cone Calorimeter at an external
heat flux of 50 kW/m2. TEM micrographs, physical, mechanical, and flammability
properties are included in the paper. Polyamide 11 and 12 nanocomposites properties are
compared with polyamide 11 and 12 baseline polymers. Based on flammability and
mechanical material performance, selective polymers including polyamide 11
nanocomposites and control polyamide 11 were cryogenically ground into fine powders
and fabricated into SLS parts.Mechanical Engineerin
Recommended from our members
Innovative Selective Laser Sintering Rapid Manufacturing using Nanotechnology
The objective of this research is to develop an improved nylon 11 (polyamide 11) polymer
with enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing (RM). A nanophase was introduced into nylon 11 via twin screw
extrusion to provide improved material properties of the polymer blends. Atofina (now known
as Arkema) RILSAN® nylon 11 injection molding polymer pellets was used with three types of
nanoparticles: chemically modified montmorillonite (MMT) organoclays, nanosilica, and carbon
nanofibers (CNF) to create nylon 11 nanocomposites. Wide angle X-ray diffraction (WAXD)
and transmission electron microscopy (TEM) were used to determine the degree of dispersion.
Fifteen nylon 11 nanocomposites and control nylon 11 were fabricated by injection molding.
Flammability properties (using a cone calorimeter with a radiant flux of 50 kW/m2
) and
mechanical properties such as tensile strength and modulus, flexural modulus, elongation at
break were determined for the nylon 11 nanocomposites and compared with the baseline nylon
11. Based on flammability and mechanical material performance, five polymers including four
nylon 11 nanocomposites and a control nylon 11 were cryogenically ground into fine powders
for SLS RM. SLS specimens were fabricated for flammability, mechanical, and thermal
properties characterization. Nylon 11-CNF nanocomposites exhibited the best overall properties
for this study.Mechanical Engineerin
Intravenöse Midazolam-Ketamin-Anästhesie zur geschlossenen Reposition der Vorderarmfraktur bei Kindern: Bringt eine zusätzliche axilläre Plexusblockade Vorteile?
Zusammenfassung: Hintergrund: Das Ziel dieser Studie war es zu vergleichen, ob der intravenöse Ketaminbedarf bei Midazolam-Ketamin-Anästhesie durch die Kombination mit einer axillären Plexusblockade zur geschlossenen Reposition einer Vorderarmfraktur bei Kindern reduziert werden kann. Methoden: Mit dem Einverständnis der Ethikkommission wurde eine retrospektive Gruppenanalyse bei Kindern durchgeführt, die in den Jahren 2000-2001 eine Midazolam-Ketamin-Anästhesie (GruppeA) oder in den Jahren 2002-2004 eine Midazolam-Ketamin-Anästhesie in Kombination mit einer axillären Plexusblockade (GruppeB) zur geschlossenen Reposition einer Vorderarmfraktur erhielten. Der Bedarf an Ketamin und postoperativen Analgetika wurde erfasst. Die Daten der Gruppen wurden mit dem Mann-Whitney-U-Test (nichtnormalverteilte Daten) oder dem T-Test (normalverteilte Daten) und dem χ2-Test verglichen (p<0,05). Ergebnisse: Insgesamt wurden 455Kinder (GruppeA: 225, GruppeB: 230) in die Studie aufgenommen. Der Bedarf an intravenösem Ketamin differierte statistisch nicht signifikant zwischen den beiden Gruppen (p=0,154). Der Ketaminbedarf in GruppeB wurde jedoch signifikant geringer, wenn das Zeitintervall zwischen dem Beginn der Plexusanästhesie und dem Beginn der Intervention mehr als 15min betrug (p<0,05). Patienten der GruppeB benötigten weniger Analgetika in der postoperativen Phase (p<0,01). Schlussfolgerung: Durch die Kombination der Midazolam-Ketamin-Anästhesie mit der axillären Plexusblockade zur geschlossenen Reposition einer Vorderarmfraktur bei Kindern ließ sich der Bedarf an Ketamin in der klinischen Routine einer Notfallstation nicht reduziere
Physical Properties of a Set of Sandstones, III: the Effects Of Fine Grained Pore Filling Material on Compressional Wave Velocity
We have used aspect ratio modeling to explain the measured compressional
wave velocities of twenty different dry sandstone samples with varying clay
contents at a single confining pressure of 0.5 kbar. Velocities of the sandstones
range between 3.1 km/sec and 5.7 km/sec. Measured porosities are between 6%
and 33%, clay contents between 2% and 30%. Pores were described using three
simple type classifications. The pore type distributions of the samples were
quantified by point counting polished impregnated thin sections using a scanning
electron microscope. A representative aspect-ratio was assigned to each of the
three categories of pore type. Velocities were modeled using these aspect ratios
weighted by the observed distribution of the porosity types. Agreement between
theoretical and measured velocities is generally within 10%. The modeling suggests
that the effects of clays in sandstone pores is to reduce the sample porosity without
reducing the non-framework (void + clay) volume. Thus, for a given porosity, clay rich
samples contain greater non-framework volume, which in turn lowers velocity. The
model derived from the dry measurements can be used to successfully approximate
empirical relationships for saturated samples of velocity-porosity-clay content taken
from the literature.Schlumberger-Doll Research CenterSchlumberger Foundation. Post-Doctoral Fellowshi
Recommended from our members
Polyamide 11-Carbon Nanotubes Nanocomposites: Preliminary Investigation
The objective of this research is to develop an improved polyamide 11 (PA11) polymer with
enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing. In the present study, a nanophase was introduced into polyamide 11
via twin screw extrusion. Arkema Rilsan® polyamide 11 molding polymer pellets were used
with 1, 3, 5, and 7 wt% loadings of Arkema’s GraphistrengthTM multi-wall carbon nanotubes
(MWNTs) to create a family of PA11-MWNT nanocomposites.
Transmission electron microscopy and scanning electron microscopy were used to determine
the degree and uniformity of dispersion. Injection molded test specimens were fabricated for
physical, thermal, mechanical properties, and flammability measurements. Thermal stability of
these polyamide 11-MWNT nanocomposites was examined by TGA. Mechanical properties such
as ultimate tensile strength, rupture tensile strength, and elongation at rupture were measured.
Flammability properties were also obtained using the UL 94 test method. All these different
methods and subsequent polymer characteristics are discussed in this paper.Mechanical Engineerin
Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis
Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics
Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media
In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application
Dr. Zompo: an online data repository for Zostera marina and Posidonia oceanica ESTs
As ecosystem engineers, seagrasses are angiosperms of paramount ecological importance in shallow shoreline habitats around the globe. Furthermore, the ancestors of independent seagrass lineages have secondarily returned into the sea in separate, independent evolutionary events. Thus, understanding the molecular adaptation of this clade not only makes significant contributions to the field of ecology, but also to principles of parallel evolution as well. With the use of Dr. Zompo, the first interactive seagrass sequence database presented here, new insights into the molecular adaptation of marine environments can be inferred. The database is based on a total of 14 597 ESTs obtained from two seagrass species, Zostera marina and Posidonia oceanica, which have been processed, assembled and comprehensively annotated. Dr. Zompo provides experimentalists with a broad foundation to build experiments and consider challenges associated with the investigation of this class of non-domesticated monocotyledon systems. Our database, based on the Ruby on Rails framework, is rich in features including the retrieval of experimentally determined heat-responsive transcripts, mining for molecular markers (SSRs and SNPs), and weighted key word searches that allow access to annotation gathered on several levels including Pfam domains, GeneOntology and KEGG pathways. Well established plant genome sites such as The Arabidopsis Information Resource (TAIR) and the Rice Genome Annotation Project are interfaced by Dr. Zompo. With this project, we have initialized a valuable resource for plant biologists in general and the seagrass community in particular. The database is expected to grow together with more data to come in the near future, particularly with the recent initiation of the Zostera genome sequencing project
- …