2,765 research outputs found
Impact of a Science Methods Course on Pre-Service Elementary Teachers\u27 Knowledge and Confidence of Teaching with Scientific Inquiry and Problem-Based Learning
The purpose of this study was to measure the impact of an elementary science methods course on pre-service teachers\u27 knowledge and confidence of teaching with inquiry and problem-based instructional strategies. Changes in pre-service teachers\u27 knowledge and confidence were measured before and after completing the course activities using a pilot survey entitled Science Pedagogical Content Knowledge & Confidence (PCKC) Survey. An integrated lecture/laboratory elementary science methods course engaged participants with hands-on activities designed to increase their pedagogical content knowledge: including theory, planning and implementation of inquiry, and problem-based learning. The results indicated that pre-service teachers\u27 knowledge and confidence improved as a result of enrollment in the elementary science methods course. This article validates reform movements to incorporate scientific inquiry and problem-based learning into coursework
The Goals of Finance and their Instrumentality in Democratizing Wealth
Over time, individuals have used tools of finance to increase their own personal and familial holdings, to seek education, and to begin gaining equity stakes in their own homes, among other pursuits. Corporations have used finance to capitalize new business ventures, to provide funds for investment in research and development, and to expand into new markets. Finance, through its various instruments and practices, has thus enabled people to make manifest their ambitions and has allowed creative ideas to flourish in competitive markets. Finance, in essence, serves as the organizing principle that provides for vigorous economic activity and wealth generation in societies where it functions properly and, as such, āit can be used to help broaden prosperity across an increasingly wide range of social classes.ā Given this capacity to broaden prosperity for all, finance should be used as a tool of wealth democratization if it is to stay true to its terms of original instantiation
Evaluation of Cool Season Forage Combinations for White-Tailed Deer
Last updated: 6/1/200
Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor
We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach
High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling
Copyright @ 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685ā6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (rā+ā1)D and is usually regarded as being too large when rā>ā1. Werder et al. found that the space-time coupling matrices are diagonalizable over inline image for r ā©½100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without KelvināVoigt and MaxwellāZener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease
Pollutant dispersion in a developing valley cold-air pool
Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing cold-air pool within an alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the cold-air pool and detrained within the cold-air pool, largely above the ground-based inversion layer. The ability of the cold-air pool to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the cold-air pool, and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and cold-air pool, and on the slope wind speeds. Over the lower part of the slopes, the cold-air-pool-averaged concentrations are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the cold-air pool deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the cold-air pool above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.Peer reviewe
Hydrogen gas and its role in cell signalling
This is the author accepted manuscript. The final version is available from CAB International via the DOI in this record.āÆHydrogen gas (H2) was once thought to be inert in biological systems but it has now become apparent that exposure of a wide range of organisms, including animals and plants, to H2or hydrogen-rich water has beneficial effects. It is involved in plant development, and alleviation of stress and illness, such as reperfusion injury. Here, an overview of how H2interacts with organisms is given
Pinch Resonances in a Radio Frequency Driven SQUID Ring-Resonator System
In this paper we present experimental data on the frequency domain response
of a SQUID ring (a Josephson weak link enclosed by a thick superconducting
ring) coupled to a radio frequency (rf) tank circuit resonator. We show that
with the ring weakly hysteretic the resonance lineshape of this coupled system
can display opposed fold bifurcations that appear to touch (pinch off). We
demonstrate that for appropriate circuit parameters these pinch off lineshapes
exist as solutions of the non-linear equations of motion for the system.Comment: 9 pages, 8 figures, Uploaded as implementing a policy of arXiving old
paper
Conforming finite element methods for the clamped plate problem
Finite element methods for solving biharmonic boundary value problems are considered. The particular problem discussed is that of a clamped thin plate. This problem is reformulated in a weak, form in the Sobolev space Techniques for setting up conforming trial
Functions are utilized in a Galerkin technique to produce finite element solutions. The shortcomings of various trial function formulations are discussed, and a macroāelement approach to local mesh refinement using rectangular elements is given
- ā¦