44 research outputs found

    Thick thermal barrier coatings for diesel engines

    No full text

    Standardized emission quantification and control of costs for environmental measures

    Get PDF
    Laser welding and soldering are important industrial joining processes. As is known, LGACs (Laser Generated Air Contaminants) cause costs for environmental measures during production of complex metallic components (steel, aluminium, magnesium, alloys). The hazardous potential of such processes has been assessed by analyzing the specific emissions with respect to relevant threshold limit values (TLVs). Avoiding and controlling emissions caused by laser processing of metals or metal composites is an important task. Using the experimental results, the planning of appropriate exhaust systems for laser processing is facilitated significantly. The costs quantified for environmental measures account for significant percentages of the total manufacturing costs

    BFTT project: Al cans recycling processing using a lost cost technology

    No full text
    Presentation of final project repor

    Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction

    Get PDF
    By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum

    Characteristics of joining and hybrid composite forging of aluminum solid parts and galvanized steel sheets

    Get PDF
    In lightweight construction, light metals like aluminum are used in addition to high-strength steels. However, a welded joint of aluminum and steel leads to the precipitation of brittle, intermetallic phases and contact corrosion. Nevertheless, to use the advantages of this combination in terms of weight saving composite hybrid forging has been developed. In this process, an aluminum solid part and a steel sheet were formed in a single step and joined at the same time with zinc as brazing material. For this purpose, the zinc was applied by hot dipping on the aluminum in order to produce a connection via this layer in a forming process, under pressure and heat. Due to the formed intermediate layer of zinc, the formation of the Fe-Al intermetallic phases and the contact corrosion are excluded. By determining the mathematical relationships between joining parameters and the connection properties the strength of a specific joint geometry could be adjusted to reach the level of conventional joining techniques. In addition to the presentation of the joint properties, the influence of the joining process on the structure of the involved materials is also shown. Furthermore, the failure behavior under static tensile and shear stress will be shown

    Grain Refinement after Various Thermo-Mechanical Treatments in AZ80 and ZK60 Magnesium Alloys

    No full text
    The effect of thermal processing prior to severe plastic deformation by extrusion and swaging on grain refinement in ZK60 and AZ80 alloys was studied. The alloys received in direct-chill cast condition were homogenized at 415C and annealed (over-aged) at temperatures from 200 to 380°C. Both the direct-hill cast and over-aged conditions were extruded at T = 300C using an extrusion ratio of ER = 19. Hot extrusion resulted in substantial grain refinement in both cases, the effect being stronger in the over-aged material. The extruded bars were severe plastically deformed at 250C by swaging. Swaging refined further the grain size depending on the deformation ratio (number of passes). At optimal processing conditions the grain size was 450 nm and 570 nm for the AZ80 and ZK60 alloys, respectively

    Influence of welding current and focal position on the resonant absorption of laser radiation in a TIG welding arc

    Get PDF
    The work presents the influence of welding current and focal position on the resonant absorption of diode laser radiation in a TIG welding arc. The laser beam is guided perpendicular to the electrical arc to avoid an interaction with the electrodes. Laser power measurements have shown a reduction of the measured laser power up to 18 % after passing the electrical arc. This reduction results from the interaction of argon shielding gas atoms and laser radiation at 810.4 nm and 811.5 nm. The interaction is strongly affected by the adjusted welding current and the adjustment of the laser beam and the electrical arc. Lowering the welding current or shifting the laser beam out of the centerline of the electrical arc reduces the ionization probability. An increased ionization is necessary to decrease the resistance of the electrical arc
    corecore