53 research outputs found

    Low-field magnetoresistance in GaAs 2D holes

    Full text link
    We report low-field magnetotransport data in two-dimensional hole systems in GaAs/AlGaAs heterostructures and quantum wells, in a large density range, 2.5×1010≤p≤4.0×10112.5 \times 10^{10} \leq p \leq 4.0 \times 10^{11} cm−2^{-2}, with primary focus on samples grown on (311)A GaAs substrates. At high densities, p≳1×1011p \gtrsim 1 \times 10^{11} cm−2^{-2}, we observe a remarkably strong positive magnetoresistance. It appears in samples with an anisotropic in-plane mobility and predominantly along the low-mobility direction, and is strongly dependent on the perpendicular electric field and the resulting spin-orbit interaction induced spin-subband population difference. A careful examination of the data reveals that the magnetoresistance must result from a combination of factors including the presence of two spin-subbands, a corrugated quantum well interface which leads to the mobility anisotropy, and possibly weak anti-localization. None of these factors can alone account for the observed positive magnetoresistance. We also present the evolution of the data with density: the magnitude of the positive magnetoresistance decreases with decreasing density until, at the lowest density studied (p=2.5×1010p = 2.5 \times 10^{10} cm−2^{-2}), it vanishes and is replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure

    The effect of inter-edge Coulomb interactions on the transport between quantum Hall edge states

    Full text link
    In a recent experiment, Milliken {\em et al.} demonstrated possible evidence for a Luttinger liquid through measurements of the tunneling conductance between edge states in the ν=1/3\nu=1/3 quantum Hall plateau. However, at low temperatures, a discrepancy exists between the theoretical predictions based on Luttinger liquid theory and experiment. We consider the possibility that this is due to long-range Coulomb interactions which become dominant at low temperatures. Using renormalization group methods, we calculate the cross-over behaviour from Luttinger liquid to the Coulomb interaction dominated regime. The cross-over behaviour thus obtained seems to resolve one of the discrepancies, yielding good agreement with experiment.Comment: 4 pages, RevTex, 2 postscript figures, tex file and figures have been uuencode

    Charge Density Wave Behaviour of the Integer Quantum Hall Effect Edge States

    Full text link
    We analyze the effect that the Coulomb interaction has on the edge excitations of an electron gas confined in a bar of thickness WW, and in presence of a magnetic field corresponding to filling factor 1 Quantum Hall effect. We find that the long-range interaction between the edges leads the system to a ground state with a quasi-long range order, similar to a Charge Density Wave. The spectral density of states vanishes at zero frequency, and increases with frequency faster than any power law, being the conductance of a infinite long system zero.Comment: 10 pages, latex, 3 figures available by FAX upon request from [email protected]

    In-plane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems

    Full text link
    Using a novel technique, we make quantitative measurements of the spin polarization of dilute (3.4 to 6.8*10^{10} cm^{-2}) GaAs (311)A two-dimensional holes as a function of an in-plane magnetic field. As the field is increased the system gradually becomes spin polarized, with the degree of spin polarization depending on the orientation of the field relative to the crystal axes. Moreover, the behavior of the system turns from metallic to insulating \textit{before} it is fully spin polarized. The minority-spin population at the transition is ~8*10^{9} cm^{-2}, close to the density below which the system makes a transition to an insulating state in the absence of a magnetic field.Comment: 4 pages with figure

    Inter-Edge interaction in the Quantum Hall Effect

    Full text link
    We consider effects of the interaction between electrons drifting along the opposite sides of a narrow sample under the conditions of the quantum Hall effect. A spatial variation of this interaction leads to backward scattering of collective excitations propagating along the edges. Experiments on propagation of the edge modes in samples with constrictions may give information about the strength of the inter-edge electron interaction in the quantum Hall regime.Comment: 12 Pages, Latex, Accepted for publication in PRL

    Non-monotonic magnetic field and density dependence of in-plane magnetoresistance in dilute two-dimensional holes in GaAs/AlGaAs

    Full text link
    We studied low temperature (T=50mK) in-plane magnetoresistance of a dilute two-dimensional hole system in GaAs/AlGaAs heterostructure that exhibits an apparent metal-insulator transition. We found an anisotropic magnetoresistance, which changes dramatically at high in-plane fields (B_{\parallel}\agt5T) as the hole density is varied. At high densities where the system behaves metallic at B∥=0B_{\parallel}=0, the transverse magnetoresistance is larger than the longitudinal magnetoresistance. With decreasing the hole density the difference becomes progressively smaller, and at densities near the "critical" density and lower, the longitudinal magnetoresistance becomes larger than the transverse magnetoresistance

    Repulsion of Single-well Fundamental Edge Magnetoplasmons in Double Quantum Wells

    Full text link
    A {\it microscopic} treatment of fundamental edge magnetoplasmons (EMPs) along the edge of a double quantum well (DQW) is presented for strong magnetic fields, low temperatures, and total filling factor \nu=2. It is valid for lateral confining potentials that Landau level (LL) flattening can be neglected. The cyclotron and Zeeman energies are assumed larger than the DQW energy splitting \sqrt{\Delta^2 +4T^2}, where \Delta is the splitting of the isolated wells and T the tunneling matrix element. %hen calculated unperturbed density profile is sharp at the edge. Using a random-phase approximation (RPA), which includes local and nonlocal contributions to the current density, it is shown that for negligible tunnel coupling 2T << \Delta the inter-well Coulomb coupling leads to two DQW fundamental EMPs which are strongly renormalized in comparison with the decoupled, single-well fundamental EMP. These DQW modes can be modified further upon varying the inter-well distance d, along the z axis, and/or the separation of the wells' edges \Delta y along the y axis. The charge profile of the {\it fast} and {\it slow} DQW mode varies, respectively, in an {\it acoustic} and {\it optical} manner along the y axis and is not smooth on the \ell_{0} scale. For strong tunneling \Delta\alt 2T these DQW modes are essentially modified when \Delta is changed by applying a transverse electric field to the DQW.Comment: Text 18 pages in Latex/Revtex/Preprint format, 2 Postscript figure

    Electronic Spectral Functions for Quantum Hall Edge States

    Full text link
    We have evaluated wavevector-dependent electronic spectral functions for integer and fractional quantum Hall edge states using a chiral Luttinger liquid model. The spectral functions have a finite width and a complicated line shape because of the long-range of the Coulomb interaction. We discuss the possibility of probing these line shapes in vertical tunneling experiments.Comment: 4 pages, RevTex, two figures included, to appear as a Rapid Communication in PRB; we updated references which have recently appeared in print and were cited as preprints in our ealier submissio

    Plasmon Modes and Correlation Functions in Quantum Wires and Hall Bars

    Full text link
    We present microscopic derivations of the one-dimensional low-energy boson effective Hamiltonians of quantum wire and quantum Hall bar systems. The quantum Hall system is distinguished by its spatial separation of oppositely directed electrons. We discuss qualitative differences in the plasmon collective mode dispersions and the ground state correlation functions of the two systems which are consequences of this difference. The slowly-decaying quasi-solid correlations expected in a quantum wire are strongly suppressed in quantum Hall bar systems.Comment: 7 pages, RevTex, 3 figures and 1 table included; references updated and minor typos correcte
    • …
    corecore