648 research outputs found

    Signature of nearly icosahedral structures in liquid and supercooled liquid Copper

    Full text link
    A growing body of experiments display indirect evidence of icosahedral structures in supercooled liquid metals. Computer simulations provide more direct evidence but generally rely on approximate interatomic potentials of unproven accuracy. We use first-principles molecular dynamics simulations to generate realistic atomic configurations, providing structural detail not directly available from experiment, based on interatomic forces that are more reliable than conventional simulations. We analyze liquid copper, for which recent experimental results are available for comparison, to quantify the degree of local icosahedral and polytetrahedral order

    Electron-ion and ion-ion potentials for modeling warm-dense-matter: applications to laser-heated or shock-compressed Al and Si

    Full text link
    The pair-interactions U_{ij}(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., g_{ij}(r). Great simplicity is achieved if U_{ij}(r) could be directly used to predict material properties via classical simulations, avoiding many-body wavefunctions. Warm dense matter (WDM) is encountered in quasi-equilibria where the electron temperature TeT_e differs from the ion temperature T_i, as in laser-heated or in shock-compressed matter. The electron PDFs g_{ee}(r) as perturbed by the ions are used to evaluate fully non-local exchange-correlation corrections to the free energy, using Hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with T_e \ne T_i, and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive regions, and then become repulsive and `Yukawa-like' for higher TeT_e. These results clarify the origin of initial phonon-hardening and rapid release. Pair-potentials for shock-heated WDM show that phonon hardening would not occur in most such systems. Defining meaningful quasi-equilibrium static transport coefficients consistent with the dynamic values is addressed. There seems to be no meaningful `static conductivity' obtainable by extrapolating experimental or theoretical \sigma(\omega, T_i, T_e) to \omega \to 0, unless T_i \to T_e as well. Illustrative calculations of quasi-static resistivities R(T_i,T_e) of laser-heated as well as shock-heated Aluminum and Silicon are presented using our pseudopotentials, pair-potentials and classical integral equations. The quasi-static resistivities display clear differences in their temperature evolutions, but are not the strict \omega \to 0 limits of the dynamic values.Comment: 12 pages, 6 figues, Latex file

    Partial Structure Factors of Liquid Na-K and Al-Mg Alloys(Physics)

    Get PDF
    Three partial structure factors S_(Q) have been evaluated from the scattered X-ray intensities of liquid Na-K and Al-Mg alloys assuming that the S_(Q) are independent of the relative abundance of the respective elements in the alloys. The functions S_(Q) and S_(Q) and the reduced radial distribution functions G_(r) and G_(r) obtained in this work are very similar to those observed in the respective pure liquid metals. In both cases, S_(Q) and G_(r) have maxima which lie in between those of the pure elements. From these results, liquid Na-K and Al-Mg alloys are interpreted as random mixing fluids. A comparison between the partial structure factors obtained in this work and those calculated from the hard sphere model was made. Adequate agreement was obtained on the low angle side of the first peak, but agreement on the whole pattern is not necessarily found. The electrical resistivity was calculated using Faber-Ziman\u27s theory and compared with experimental data

    Sulphur potential measurements with a two-phase sulphideoxide electrolyte

    Get PDF
    The open circuit potentials of the galvanic cell,Pt (or Au)|(Ar + H2S + H2)'||CaS + ZrO2(CaO)|| (Ar + H2S+ H2)"|Pt (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10-5 to 2.65×10-1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a point electrode with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected

    Structural Study of an Amorphous Bi-Fe-Ca-O Thin Film by the Anomalous X-ray Scattering

    Get PDF
    The structure of the amorphous Bi-Fe-Ca-O film with 0.3 m thick grown on the Si single crystal was studied by the anomalous x-ray scattering (AXS) method. This relatively new method using the anomalous dispersion effect of a specific constituent element in a film reduces the difficulty in the subtraction process of a substrate intensity for estimating the net intensity of a thin film, which becomes a main cause of errors of the resultant data in the conventional method. The environmental radial distribution functions around Bi and Fe in the amorphous Bi-Fe-Ca-O film were determined, from which the structural features were obtained

    Surface structure in simple liquid metals. An orbital free first principles study

    Full text link
    Molecular dynamics simulations of the liquid-vapour interfaces in simple sp-bonded liquid metals have been performed using first principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.Comment: 16 pages, 18 figures, 5 tables. Submitted to Phys. Rev.

    Liquid-liquid phase transition in Stillinger-Weber silicon

    Full text link
    It was recently demonstrated that the Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell, Nature Materials 2, 739 (2003)). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5 %. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.Comment: 13 page

    Structure Factor and Electronic Structure of Compressed Liquid Rubidium

    Full text link
    We have applied the quantal hypernetted-chain equations in combination with the Rosenfeld bridge-functional to calculate the atomic and the electronic structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and 6.1 GPa); the calculated structure factors are in good agreement with experimental results measured by Tsuji et al. along the melting curve. We found that the Rb-pseudoatom remains under these high pressures almost unchanged with respect to the pseudoatom at room pressure; thus, the effective ion-ion interaction is practically the same for all pressure-values. We observe that all structure factors calculated for this pressure-variation coincide almost into a single curve if wavenumbers are scaled in units of the Wigner-Seitz radius aa although no corresponding scaling feature is observed in the effective ion-ion interaction.This scaling property of the structure factors signifies that the compression in liquid-rubidium is uniform with increasing pressure; in absolute Q-values this means that the first peak-position (Q1Q_1) of the structure factor increases proportionally to V1/3V^{-1/3} (VV being the specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure

    Structural Study of Binary Phosphate Glasses by X-ray and Neutron Diffraction

    Get PDF
    X-ray and neutron diffraction study on the structure of five binary metaphosphate glasses has been made by applying the pair function method coupled with the interference function refining technique. The distances and coordination numbers for the pairs of P-O, O-O and M-O (M=Li, Na, Zn, Mg, and Ca) were determined and a fundamental local ordering unit structure in these binary phosphate glasses has been confirmed to be a PO_4 tetrahedron and the particular features have also been recognized with respect to the numbers of oxygens around magnesium and zinc cations
    corecore