18,261 research outputs found

    Atomic and molecular intracules for excited states

    Get PDF
    Intracules in position space, momentum space and phase space have been calculated for low-lying excited states of the He atom, Be atom, formaldehyde and butadiene. The phase-space intracules (Wigner intracules) provide significantly more information than the position- and momentum-space intracules, particularly for the Be atom. Exchange effects are investigated through the differences between corresponding singlet and triplet states.This work was supported by the Engineering and Physical Sciences Research Council through the award of an Advanced Research Fellowship (GR/R77636) to NAB and a Joint Research Equipment Initiative grant (GR/R62052)

    Correlation energy of two electrons in the high-density limit

    Full text link
    We consider the high-density-limit correlation energy \Ec in D≥2D \ge 2 dimensions for the 1S^1S ground states of three two-electron systems: helium (in which the electrons move in a Coulombic field), spherium (in which they move on the surface of a sphere), and hookium (in which they move in a quadratic potential). We find that the \Ec values are strikingly similar, depending strongly on DD but only weakly on the external potential. We conjecture that, for large DD, the limiting correlation energy \Ec \sim -\delta^2/8 in any confining external potential, where δ=1/(D−1)\delta = 1/(D-1).Comment: 4 pages, 0 figur

    A Remarkable Identity Involving Bessel Functions

    Full text link
    We consider a new identity involving integrals and sums of Bessel functions. The identity provides new ways to evaluate integrals of products of two Bessel functions. The identity is remarkably simple and powerful since the summand and integrand are of exactly the same form and the sum converges to the integral relatively fast for most cases. A proof and numerical examples of the identity are discussed.Comment: 10 pages, 2 figure

    Chemistry in One Dimension

    Full text link
    We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting via the Coulomb operator ∣x∣−1|x|^{-1}. Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order M{\o}ller-Plesset perturbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other interesting properties of the many-electron 1D atoms and, based on these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation curves of various 1D diatomics and study the chemical bond in H2+_2^+, HeH2+^{2+}, He23+_2^{3+}, H2_2, HeH+^+ and He22+_2^{2+}. We find that, unlike their 3D counterparts, 1D molecules are primarily bound by one-electron bonds. Finally, we study the chemistry of H3+_3^+ and we discuss the stability of the 1D polymer resulting from an infinite chain of hydrogen atoms.Comment: 27 pages, 7 figure
    • …
    corecore