18 research outputs found

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    Strengthening of truss spans and supports of a road bridge in Bogatynia

    No full text
    W artykule opisano stan techniczny, sposób naprawy i wzmocnienia czterech przęseł kratowych i przebudowy jednego przęsła żelbetowego w drogowym moście w ciągu drogi wojewódzkiej nr 354 w Bogatyni. Przed przebudową obiekt posiadał ograniczoną nośność do klasy D (20 ton). Po przebudowie jego nośność wynosić będzie 40 ton, tj. odpowiadać będzie klasie B według PN-85/S-10030. Zakres obecnej przebudowy w czterech przęsłach kratowych obejmował wymianę żelbetowej płytowej podbudowy nawierzchni jezdni na moście na nową, grubszą żelbetową płytę pomostową, wzmocnienie kratowych dźwigarów głównych z zastosowaniem tzw. trzeciego pasa górnego, wzmocnienie oraz naprawę i uzupełnienie ubytków przekrojów stalowych w prętach kratowych dźwigarów głównych i w elementach pomostu, zewnętrzne sprężenie podłużne dolnych pasów dźwigarów kratowych, wzmocnienie posadowienia podpór pośrednich i skrajnych oraz odnowę powłok malarskich na przęsłach i łożyskach. Jedno przęsło żelbetowe zostało przebudowane z zastosowaniem nowych dźwigarów prefabrykowanych typu Kujan. Przedmiotowy obiekt powstał w 1959 roku, a wiosną obecnego roku ukończono zasadnicze prace związane ze wzmocnieniem jego konstrukcji nośnej i podpór.The article describes technical condition, method of repair and strengthening of four truss spans and refurbishment of one concrete span in a road bridge located in a voivodeship road 354 in Bogatynia. Before the reconstruction the bridge had limited load capacity (D-class – 20 tons). After the reconstruction the load capacity of the bridge will be 40 tons (B-class according to Polish Norm PN-85/S-10030). The reconstruction of four truss spans included replacement of reinforced-concrete superstructure of the road surface to a reinforced concrete deck, strengthening of main truss girders using third top chord, repair of steel bracings, floor beams and stringers, external prestressing of bottom chords of truss girders, strengthening of piers and abutments and renovation of coatings on spans and bearings. The concrete span was rebuilt with new prestressed Kujan beams. The bridge was erected in 1959 and this spring the reconstruction and strengthening of its structure was finished

    Wzmocnienie przęseł kratowych oraz podpór mostu drogowego w Bogatyni

    No full text
    W artykule opisano stan techniczny, sposób naprawy i wzmocnienia czterech przęseł kratowych i przebudowy jednego przęsła żelbetowego w drogowym moście w ciągu drogi wojewódzkiej nr 354 w Bogatyni. Przed przebudową obiekt posiadał ograniczoną nośność do klasy D (20 ton). Po przebudowie jego nośność wynosić będzie 40 ton, tj. odpowiadać będzie klasie B według PN-85/S-10030. Zakres obecnej przebudowy w czterech przęsłach kratowych obejmował wymianę żelbetowej płytowej podbudowy nawierzchni jezdni na moście na nową, grubszą żelbetową płytę pomostową, wzmocnienie kratowych dźwigarów głównych z zastosowaniem tzw. trzeciego pasa górnego, wzmocnienie oraz naprawę i uzupełnienie ubytków przekrojów stalowych w prętach kratowych dźwigarów głównych i w elementach pomostu, zewnętrzne sprężenie podłużne dolnych pasów dźwigarów kratowych, wzmocnienie posadowienia podpór pośrednich i skrajnych oraz odnowę powłok malarskich na przęsłach i łożyskach. Jedno przęsło żelbetowe zostało przebudowane z zastosowaniem nowych dźwigarów prefabrykowanych typu Kujan. Przedmiotowy obiekt powstał w 1959 roku, a wiosną obecnego roku ukończono zasadnicze prace związane ze wzmocnieniem jego konstrukcji nośnej i podpór.The article describes technical condition, method of repair and strengthening of four truss spans and refurbishment of one concrete span in a road bridge located in a voivodeship road 354 in Bogatynia. Before the reconstruction the bridge had limited load capacity (D-class – 20 tons). After the reconstruction the load capacity of the bridge will be 40 tons (B-class according to Polish Norm PN-85/S-10030). The reconstruction of four truss spans included replacement of reinforced-concrete superstructure of the road surface to a reinforced concrete deck, strengthening of main truss girders using third top chord, repair of steel bracings, floor beams and stringers, external prestressing of bottom chords of truss girders, strengthening of piers and abutments and renovation of coatings on spans and bearings. The concrete span was rebuilt with new prestressed Kujan beams. The bridge was erected in 1959 and this spring the reconstruction and strengthening of its structure was finished

    A novel approach for nondestructive depth-resolved analysis of residual stress and grain interaction in the near-surface zone applied to an austenitic stainless steel sample subjected to mechanical polishing

    No full text
    The choice of the grain interaction model is a critical element of residual stress analysis using diffraction methods. For the near-surface region of a mechanically polished austenitic steel, it is shown that the application of the widely used Eshelby-Kr¨oner model does not lead to a satisfactory agreement with experimental observations. Therefore, a new grain interaction model called ’tunable free-surface’ is proposed, allowing for the determination of the in-depth evolution of the elastic interaction between grains. It has a strong physical justification and is adjusted to experimental data using three complementary verification methods. It is shown that a significant relaxation of the intergranular stresses perpendicular to the sample surface occurs in the subsurface layer having a thickness comparable with the average size of the grain. Using the new type of X-ray Stress Factors, the in-depth evolution (up to the depth of 45 μm) of residual stresses and of the strain-free lattice parameter is determined

    A novel high-strength Zn-3Ag-0.5Mg alloy processed by hot extrusion, cold rolling or high-pressure torsion

    No full text
    A novel Zn-3Ag-0.5Mg alloy was plastically deformed using 3 processing paths: hot extrusion (HE), HE followed by cold rolling (CR) and high-pressure torsion (HPT). The processed samples consisted of the η-Zn phase, ε-Zn3Ag precipitates within the matrix, and nanometric Zn2Mg precipitates within the Zn11Mg2 phase located at the grain boundaries. Both the η-Zn phase and Mg-rich phases were enriched in Ag. Electron backscattered diffraction was used to examine the effects of grain size and texture on mechanical behavior with tensile tests performed at room temperature (RT) at different strain rates. The coarsegrained (~6 μm) samples after HE exhibited high strength with brittleness due to dislocation interaction with dispersed precipitates and, to some extent, with twinning activation. Significant grain refinement and processing at RT gave an increase in elongation to over 50% in CR and 120% in HPT. Ductile CR samples with an average grain size of ~2μm and favorable rolling deformation texture gave a yield strength of ~254 MPa, a tensile strength of ~456 MPa and a reasonable strain rate sensitivity. These values for the CR samples meet the mechanical requirements for biodegradable stents in cardiovascular applications
    corecore