258 research outputs found
Programas de adultos mayores en Chile con ejercicio físico : una revisión de la literatura
Tesis (Kinesiólogo)La población de adulto mayor (AM) en el mundo es cada vez mayor, hecho que no escapa a Chile. Uno de los grandes retos a los que se enfrenta el país es el cuidado y mantención de los AM, por lo que durante las últimas dos décadas se han creado un grupo de programas dirigidos hacia ellos.
Nuestra investigación aborda los distintos programas dirigidos a los AM que contienen el ejercicio físico como eje esencial, ya que está demostrado que éste ayuda a minimizar los factores de riesgo de enfermedades cardiovasculares (ECV), principal causa de muerte tanto a nivel nacional como mundial. (
A través de una búsqueda bibliográfica de estos programas, detectamos dos grandes problemas: por un lado, la descripción de los trabajos específicos a realizar es casi nula, quedando en manos del profesional de turno la planificación de los ejercicios. Por otro lado, la cantidad de los programas es muy baja, obteniendo una muestra de solo tres programas.
Dada la importancia del ejercicio físico en los AM, sostenemos que es de suma importancia trabajar más y mejor en estos programas, ya que con ellos se puede brindar una mejor calidad de vida para los AM, manteniéndolos activos, autovalentes y con menor riesgo de ECV.The population of senior citizens in the world is increasing quickly, and the
situation in Chile also has also been following this trend. One of the great
challenges that this presents for the country is the care and support for these
citizens; for this reason, during the past two decades various programs for the
elderly have been created.(1)
Our research deals with these programs for senior citizens, where physical
activity is the core activity and goal. It has been shown that physical activity helps
diminish the risk of cardiovascular diseases, which are the main cause of death
in Chile and around the world. (2)
Researching the bibliographical sources of these programs, we have come
to the conclusion that there are two major problems. On one hand, the description
of the specific exercises and activities is basically inexistent, therefore the
professional in charge is free to plan the activities as he/she sees fit. On the other
hand, the number of programs that exist is very low, with a total of only 3 programs
nationwide.
Given the importance of physical activity for senior citizens, we believe that
is it extremely important to further develop these programs, since they can help
improve the quality of life for senior citizens, keeping them active, autonomous,
and with lower risks of cardiovascular diseases
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Genus Viburnum: Therapeutic Potentialities and Agro-Food- Pharma Applications
The genus Viburnum (Adoxaceae, Dipsacales) is of scientific interest due to the chemical components and diverse biological activities found across species of the genus, which includes more than 230 species of evergreen, semievergreen, or deciduous shrubs and small trees. Although frequently used as an ornament, the Viburnum species show biological properties with health-promoting effects. Fruits, flowers, and barks of certain species are used for pharmaceutical purposes or as cooking ingredients, hence containing biochemical compounds with health-promoting activity such are carotenoids, polyphenols, and flavonoids. However, its taxonomical determination is difficult, due to its wide distribution and frequent hybridizations; therefore, an objective classification would allow us to understand its biological activity based on its phytochemical components. More than sixty phytochemical compounds have been reported, where vibsanin-type diterpenes and their derivatives are the most prevalent. Leaves and twigs of V. dilatatum contain the largest number of phytochemicals among the genus. Through preclinical evidence, this study provides insight regarding antioxidant, antibacterial, anti-inflammatory, cytotoxic, and anticancer activities of genus Viburnum
Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the
Pierre Auger Observatory to complement the study of ultra-high-energy cosmic
rays (UHECR) by measuring the muon content of extensive air showers (EAS). It
consists of an array of 61 water Cherenkov detectors on a denser spacing in
combination with underground scintillation detectors used for muon density
measurement. Each detector is composed of three scintillation modules, with 10
m detection area per module, buried at 2.3 m depth, resulting in a total
detection area of 30 m. Silicon photomultiplier sensors (SiPM) measure the
amount of scintillation light generated by charged particles traversing the
modules. In this paper, the design of the front-end electronics to process the
signals of those SiPMs and test results from the laboratory and from the Pierre
Auger Observatory are described. Compared to our previous prototype, the new
electronics shows a higher performance, higher efficiency and lower power
consumption, and it has a new acquisition system with increased dynamic range
that allows measurements closer to the shower core. The new acquisition system
is based on the measurement of the total charge signal that the muonic
component of the cosmic ray shower generates in the detector.Comment: 40 pages, 33 figure
Measurement of the cosmic-ray energy spectrum above 2.5 x 10(18) eV using the Pierre Auger Observatory
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10 eV. The principal conclusions are
(1) The flattening of the spectrum near 5×10 eV, the so-called “ankle,” is confirmed.
(2) The steepening of the spectrum at around 5×10 eV is confirmed.
(3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝E) changes from 2.51±0.03 (stat)±0.05 (syst) to 3.05±0.05 (stat)±0.10 (syst) before changing sharply to 5.1±0.3 (stat)±0.1 (syst) above 5×10 eV.
(4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8×10 eV
- …