4 research outputs found

    Seismic human loss estimation for an earthquake disaster using neural network

    Full text link
    In Iran, earthquakes cause enormous damage to the people and economy. If there is a proper estimation of human losses in an earthquake disaster, it could be appropriately responded and its impacts and losses will be decreased. Neural networks can be trained to solve problems involving imprecise and highly complex nonlinear data. Based on the different earthquake scenarios and diverse kind of constructions, it is difficult to estimate the number of injured people. With respect to neural network's capabilities, this paper describes a back propagation neural network method for modeling and estimating the severity and distribution of human loss as a function of building damage in the earthquake disaster. Bam earthquake data in 2003 were used to train this neural network. The final results demonstrate that this neural network model can reveal much more accurate estimation of fatalities and injuries for different earthquakes in Iran and it can provide the necessary information required to develop realistic mitigation policies, especially in rescue operation

    A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands

    No full text
    Abstract This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations
    corecore