140 research outputs found

    Space plasma effects on Earth-spaceand satellite-to-satellite communications:Working Group 4 overview

    Get PDF
    This paper summarizes the the activities carried out by Working Group 4 of COST 271 Action. The structure of this Working Group included four Working packages that were dealing with different aspects of the same overall problem related to space plasma variability and irregularities effects on advanced satellite systems. General comments about the most relevant achievements and possible future lines of research are given

    Two solar eclipses observations in Turkey

    Get PDF
    In thispap er, the changesin the ionosphere over Turkey due to two solar eclipses are reported. TEC on the eclipse day (26 April 1976) and the intensity of an HF radio wave during itspropagation over 567 km between Ankara and Elazıˇg on the eclipse day (11 August 1999) exhibited a very marked decrease

    Space plasma effects on Earth-spaceand satellite-to-satellite communications:Working Group 4 overview

    Get PDF
    This paper summarizes the the activities carried out by Working Group 4 of COST 271 Action. The structure of this Working Group included four Working packages that were dealing with different aspects of the same overall problem related to space plasma variability and irregularities effects on advanced satellite systems. General comments about the most relevant achievements and possible future lines of research are given

    Aspects of HF radio propagation

    Get PDF
    The propagation characteristics of radio signals are important parameters to consider when designing and operating radio systems. From the point of view Working Group 2 of the COST 296 Action, interest lies with effects associated with propagation via the ionosphere of signals within the HF band. Several aspects are covered in this paper: a) The directions of arrival and times of flight of signals received over a path oriented along the trough have been examined and several types of propagation effects identified. Of particular note, combining the HF observations with satellite measurements has identified the presence of irregularities within the floor of the trough that result in propagation displaced from the great circle direction. An understanding of the propagation effects that result in deviations of the signal path from the great circle direction are of particular relevance to the operation of HF radiolocation systems. b) Inclusion of the results from the above mentioned measurements into a propagation model of the northerly ionosphere (i.e. those regions of the ionosphere located poleward of, and including, the mid-latitude trough)and the use of this model to predict the coverage expected from transmitters where the signals impinge on the northerly ionosphere. c) Development of inversion techniques enabling backscatter ionograms obtained by an HF radar to be used to estimate the ionospheric electron density profile. This development facilitates the operation of over the horizon HF radars by enhancing the frequency management aspects of the systems. d) Various propagation prediction techniques have been tested against measurements made over the trough path mentioned above, and also over a long-range path between Cyprus and the UK. e) The effect of changes in the levels of ionospheric disturbances on the operational availability at various data throughput rates has been examined for the trough path mentioned earlier. The topics covered in this paper are necessarily brief, and the reader is referred to full papers referenced herein on individual aspects

    Near-Earth space plasma modelling and forecasting

    Get PDF
    In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS)in the Working Package 1.3, new ionospheric models, prediction and forecasting methods and programs as well as ionospheric imaging techniques have been developed. They include (i) topside ionosphere and meso-scale irregularity models, (ii) improved forecasting methods for real time forecasting and for prediction of foF2, M(3000)F2, MUF and TECs, including the use of new techniques such as Neurofuzzy, Nearest Neighbour, Cascade Modelling and Genetic Programming and (iii) improved dynamic high latitude ionosphere models through tomographic imaging and model validation. The success of the prediction algorithms and their improvement over existing methods has been demonstrated by comparing predictions with later real data. The collaboration between different European partners (including interchange of data) has played a significant part in the development and validation of these new prediction and forecasting methods, programs and algorithms which can be applied to a variety of practical applications leading to improved mitigation of ionosphereic and space weather effects.Published255-2713.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeJCR Journalope
    • …
    corecore