1,781 research outputs found

    Observational constraints on braneworld inflation: the effect of a Gauss-Bonnet term

    Get PDF
    High-energy modifications to general relativity introduce changes to the perturbations generated during inflation, and the latest high-precision cosmological data can be used to place constraints on such modified inflation models. Recently it was shown that Randall-Sundrum type braneworld inflation leads to tighter constraints on quadratic and quartic potentials than in general relativity. We investigate how this changes with a Gauss-Bonnet correction term, which can be motivated by string theory. Randall-Sundrum models preserve the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. The Gauss-Bonnet term breaks this relation, and also modifies the dynamics and perturbation amplitudes at high energies. We find that the Gauss-Bonnet term tends to soften the Randall-Sundrum constraints. The observational compatibility of the quadratic potential is strongly improved. For a broad range of energy scales, the quartic potential is rescued from marginal rejection. Steep inflation driven by an exponential potential is excluded in the Randall-Sundrum case, but the Gauss-Bonnet term leads to marginal compatibility for sufficient e-folds.Comment: 10 pages, 10 figures, version to appear in Physical Review

    Constraints on Dirac-Born-Infeld type dark energy models from varying alpha

    Full text link
    We study the variation of the effective fine structure constant alpha for Dirac-Born-Infeld (DBI) type dark energy models. The DBI action based on string theory naturally gives rise to a coupling between gauge fields and a scalar field responsible for accelerated expansion of the universe. This leads to the change of alpha due to a dynamical evolution of the scalar field, which can be compatible with the recently observed cosmological data around the redshift z~≲3\tilde{z} \lesssim 3. We place constraints on several different DBI models including exponential, inverse power-law and rolling massive scalar potentials. We find that these models can satisfy the varying alpha constraint provided that mass scales of the potentials are fine-tuned. When we adopt the mass scales which are motivated by string theory, both exponential and inverse power-law potentials give unacceptably large change of alpha, thus ruled out from observations. On the other hand the rolling massive scalar potential is compatible with the observationally allowed variation of alpha. Therefore the information of varying alpha provides a powerful way to distinguish between a number of string-inspired DBI dark energy models.Comment: 11 pages, 6 figure

    Dynamics of dark energy

    Full text link
    In this paper we review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating Universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.Comment: 93 pages, 26 figures, Invited Review to be submitted to International Journal of Modern Physics D; comments are welcome; Additional references included in response to over 60 comments received. Rewriting of sub-sections on anthropic principle and gravitational backreaction. New subsections adde

    Generation of electromagnetic fields in string cosmology with a massive scalar field on the anti D-brane

    Full text link
    We study the generation of electromagnetic fields in a string-inspired scenario associated with a rolling massive scalar field Ď•\phi on the anti-D3 branes of KKLT de Sitter vacua. The 4-dimensional DBI type effective action naturally gives rise to the coupling between the gauge fields and the inflaton Ď•\phi, which leads to the production of cosmological magnetic fields during inflation due to the breaking of conformal invariance. We find that the amplitude of magnetic fields at decoupling epoch can be larger than the limiting seed value required for the galactic dynamo. We also discuss the mechanism of reheating in our scenario and show that gauge fields are sufficiently enhanced for the modes deep inside the Hubble radius with an energy density greater than that of the inflaton.Comment: 4 pages and 2 eps figures, minor clarifications added and typos correcte

    Inflation and dark energy arising from geometrical tachyons

    Full text link
    We study the motion of a BPS D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical set up. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of Cosmic Microwave Background (CMB) due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by CMB anisotropies. However geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field.Comment: 11 pages, 8 figure

    Prospects of inflation in delicate D-brane cosmology

    Full text link
    We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus chi at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an anti-brane) phi, we investigate the multi-field inflation scenario involving these two fields. The two-field dynamics with the potential V(phi,chi) in this model is significantly different from the effective single-field description in terms of the field phi when the field chi is integrated out. The latter picture underestimates the total number of e-foldings even by one order of magnitude. We show that a correct single-field description is provided by a field psi obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter eta_{psi psi}=M_{pl}^2 V_{,psi psi}/V in terms of the rotated field psi determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the COBE normalization, while the tensor to scalar ratio is sufficiently small to match with observations.Comment: 12 pages, 8 figures, version to appear in Physical Review

    Solar system and equivalence principle constraints on f(R) gravity by chameleon approach

    Full text link
    We study constraints on f(R) dark energy models from solar system experiments combined with experiments on the violation of equivalence principle. When the mass of an equivalent scalar field degree of freedom is heavy in a region with high density, a spherically symmetric body has a thin-shell so that an effective coupling of the fifth force is suppressed through a chameleon mechanism. We place experimental bounds on the cosmologically viable models recently proposed in literature which have an asymptotic form f(R)=R-lambda R_c [1-(R_c/R)^{2n}] in the regime R >> R_c. From the solar-system constraints on the post-Newtonian parameter gamma, we derive the bound n>0.5, whereas the constraints from the violations of weak and strong equivalence principles give the bound n>0.9. This allows a possibility to find the deviation from the LambdaCDM cosmological model. For the model f(R)=R-lambda R_c(R/R_c)^p with 0<p<1 the severest constraint is found to be p<10^{-10}, which shows that this model is hardly distinguishable from the LambdaCDM cosmology.Comment: 5 pages, no figures, version to appear in Physical Review

    Generic estimates for magnetic fields generated during inflation including Dirac-Born-Infeld theories

    Full text link
    We estimate the strength of large-scale magnetic fields produced during inflation in the framework of Dirac-Born-Infeld (DBI) theories. This analysis is sufficiently general in the sense that it covers most of conformal symmetry breaking theories in which the electromagnetic field is coupled to a scalar field. In DBI theories there is an additional factor associated with the speed of sound, which allows a possibility to lead to an extra amplification of the magnetic field in a ultra-relativistic region. We clarify the conditions under which seed magnetic fields to feed the galactic dynamo mechanism at a decoupling epoch as well as present magnetic fields on galactic scales are sufficiently generated to satisfy observational bounds.Comment: 7 pages, no figure, accepted in Phys. Rev.

    Observational constraints on patch inflation in noncommutative spacetime

    Full text link
    We study constraints on a number of patch inflationary models in noncommutative spacetime using a compilation of recent high-precision observational data. In particular, the four-dimensional General Relativistic (GR) case, the Randall-Sundrum (RS) and Gauss-Bonnet (GB) braneworld scenarios are investigated by extending previous commutative analyses to the infrared limit of a maximally symmetric realization of the stringy uncertainty principle. The effect of spacetime noncommutativity modifies the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. We perform likelihood analyses in terms of inflationary observables using new consistency relations and confront them with large-field inflationary models with potential V \propto \vp^p in two classes of noncommutative scenarios. We find a number of interesting results: (i) the quartic potential (p=4) is rescued from marginal rejection in the class 2 GR case, and (ii) steep inflation driven by an exponential potential (p \to \infty) is allowed in the class 1 RS case. Spacetime noncommutativity can lead to blue-tilted scalar and tensor spectra even for monomial potentials, thus opening up a possibility to explain the loss of power observed in the cosmic microwave background anisotropies. We also explore patch inflation with a Dirac-Born-Infeld tachyon field and explicitly show that the associated likelihood analysis is equivalent to the one in the ordinary scalar field case by using horizon-flow parameters. It turns out that tachyon inflation is compatible with observations in all patch cosmologies even for large p.Comment: 16 pages, 11 figures; v2: updated references, minor corrections to match the Phys. Rev. D versio

    Generalized Galileon cosmology

    Full text link
    We study the cosmology of a generalized Galileon field Ď•\phi with five covariant Lagrangians in which Ď•\phi is replaced by general scalar functions fi(Ď•)f_{i}(\phi) (i=1,...,5). For these theories, the equations of motion remain at second-order in time derivatives. We restrict the functional forms of fi(Ď•)f_{i}(\phi) from the demand to obtain de Sitter solutions responsible for dark energy. There are two possible choices for power-law functions fi(Ď•)f_{i}(\phi), depending on whether the coupling F(Ď•)F(\phi) with the Ricci scalar RR is independent of Ď•\phi or depends on Ď•\phi. The former corresponds to the covariant Galileon theory that respects the Galilean symmetry in the Minkowski space-time. For generalized Galileon theories we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar and tensor perturbations as well as the condition for the stability of de Sitter solutions. We also carry out detailed analytic and numerical study for the cosmological dynamics in those theories.Comment: 24 pages, 10 figures, version to appear in Physical Review
    • …
    corecore