94 research outputs found

    Dynamic light scattering study on phase separation of a protein-water mixture: Application on cold cataract development in the ocular lens

    Full text link
    We present a detailed dynamic light scattering study on the phase separation in the ocular lens emerging during cold cataract development. Cold cataract is a phase separation effect that proceeds via spinodal decomposition of the lens cytoplasm with cooling. Intensity auto-correlation functions of the lens protein content are analyzed with the aid of two methods providing information on the populations and dynamics of the scattering elements associated with cold cataract. It is found that the temperature dependence of many measurable parameters changes appreciably at the characteristic temperature ~16+1 oC which is associated with the onset of cold cataract. Extending the temperature range of this work to previously inaccessible regimes, i.e. well below the phase separation or coexistence curve at Tcc, we have been able to accurately determine the temperature dependence of the collective and self-diffusion coefficient of proteins near the spinodal. The analysis showed that the dynamics of proteins bears some resemblance to the dynamics of structural glasses where the apparent activation energy for particle diffusion increases below Tcc indicating a highly cooperative motion. Application of ideas developed for studying the critical dynamics of binary protein/solvent mixtures, as well as the use of a modified Arrhenius equation, enabled us to estimate the spinodal temperature Tsp of the lens nucleus. The applicability of dynamic light scattering as a non-invasive, early-diagnostic tool for ocular diseases is also demonstrated in the light of the findings of the present paper

    Reversal of dysthyroid optic neuropathy following orbital fat decompression

    No full text
    AIMS—To document the successful treatment of five patients with dysthyroid optic neuropathy by orbital fat decompression instead of orbital bone decompression after failed medical therapy.
METHODS—Eight orbits of five patients with dysthyroid optic neuropathy were selected for orbital fat decompression as an alternative to bone removal decompression. Treatment with systemic corticosteroids and/or orbital radiotherapy was either unsuccessful or contraindicated in each case. All patients satisfied clinical indications for orbital bone decompression to reverse the optic neuropathy. High resolution computerised tomographic (CT) scans were performed in all cases and in each case showed signs of enlargement of the orbital fat compartment. As an alternative to bone decompression, orbital fat decompression was performed on all eight orbits.
RESULTS—Orbital fat decompression was performed on five patients (eight orbits) with optic neuropathy. Optic neuropathy was reversed in all cases. There were no cases of postoperative diplopia, enophthalmos, globe ptosis, or anaesthesia. All patients were followed for a minimum of 1( )year.
CONCLUSIONS—In a subset of patients with an enlarged orbital fat compartment and in whom extraocular muscle enlargement is not the solitary cause of optic neuropathy, fat decompression is a surgical alternative to bony decompression.


    Orbital myositis

    No full text

    Letter

    No full text

    Cosmetic Preservatives as Therapeutic Corneal and Scleral Tissue Cross-Linking Agents

    No full text
    • …
    corecore