1,408 research outputs found
The place and function of music in the secondary school curriculum
Thesis (M.M.)--Boston Universit
Isotropic compression of mixtures of hard and soft spheres
The compaction behaviour of powders with soft and hard components is of particular interest to the paint processing industry. Unfortunately, at the present time, very little is known about the internal mechanisms within such systems and therefore suitable tests are required to help in the interpretative process. The TRUBAL, Distinct Element Method (D.E.M.) program was the method of investigation used in this study. Steel (hard) and rubber (soft) particles were used in the randomly-generated, binary assemblies because they provided a sharp contrast in physical properties. For reasons of simplicity, isotropic compression of two-dimensional assemblies was also initially considered. The assemblies were first subject to quasi-static compaction, in order to define their behaviour under equilibrium conditions. The stress-strain behaviour of the assemblies under such conditions was found to be adequately described by a second-order polynomial expansion. The structural evolution of the simulation assemblies was also similar to that observed for real powder systems. Further simulation tests were carried out to investigate the effects of particle size on the compaction behaviour of the two-dimensional, binary assemblies. Later work focused on the quasi-static compaction behaviour of three-dimensional assemblies, because they represented more realistic particle systems. The compaction behaviour of the assemblies during the simulation experiments was considered in terms of percolation theory concepts, as well as more familiar macroscopic and microstructural parameters. Percolation theory, which is based on ideas from statistical physics, has been found to be useful in the interpretation of the mechanical behaviour of simple, elastic lattices. However, from the evidence of this study, percolation theory is also able to offer a useful insight into the compaction behaviour of more realistic particle assemblies
Advanced technology for minimum weight pressure vessel system
Bosses were made of fiber/resin composite materials to evaluate their potential in lightweight pressure vessels. An approximate 25% weight savings over the standard aluminum boss was achieved without boss failures during burst tests. Polymer liners and metal liners are used in fiber composite pressure vessels for containment of gases. The internal support of these liners required during the filament winding process has previously been provided by dissolvable salt mandrels. An internal pressurization technique has been developed which allows overwinding the liner without other means of support and without collapse. Study was made of several additional concepts including styrene/Saran, styrene/flexible epoxy
Sagnac effect in a chain of mesoscopic quantum rings
The ability to interferometrically detect inertial rotations via the Sagnac
effect has been a strong stimulus for the development of atom interferometry
because of the potential 10^{10} enhancement of the rotational phase shift in
comparison to optical Sagnac gyroscopes. Here we analyze ballistic transport of
matter waves in a one dimensional chain of N coherently coupled quantum rings
in the presence of a rotation of angular frequency, \Omega. We show that the
transmission probability, T, exhibits zero transmission stop gaps as a function
of the rotation rate interspersed with regions of rapidly oscillating finite
transmission. With increasing N, the transition from zero transmission to the
oscillatory regime becomes an increasingly sharp function of \Omega with a
slope \partialT/\partial \Omega N^2. The steepness of this slope dramatically
enhances the response to rotations in comparison to conventional single ring
interferometers such as the Mach-Zehnder and leads to a phase sensitivity well
below the standard quantum limit
Self-Similar Blowup Solutions to the 2-Component Camassa-Holm Equations
In this article, we study the self-similar solutions of the 2-component
Camassa-Holm equations% \begin{equation} \left\{ \begin{array} [c]{c}%
\rho_{t}+u\rho_{x}+\rho u_{x}=0
m_{t}+2u_{x}m+um_{x}+\sigma\rho\rho_{x}=0 \end{array} \right. \end{equation}
with \begin{equation} m=u-\alpha^{2}u_{xx}. \end{equation} By the separation
method, we can obtain a class of blowup or global solutions for or
. In particular, for the integrable system with , we have the
global solutions:% \begin{equation} \left\{ \begin{array} [c]{c}%
\rho(t,x)=\left\{ \begin{array} [c]{c}% \frac{f\left( \eta\right)
}{a(3t)^{1/3}},\text{ for }\eta^{2}<\frac {\alpha^{2}}{\xi}
0,\text{ for }\eta^{2}\geq\frac{\alpha^{2}}{\xi}% \end{array} \right.
,u(t,x)=\frac{\overset{\cdot}{a}(3t)}{a(3t)}x
\overset{\cdot\cdot}{a}(s)-\frac{\xi}{3a(s)^{1/3}}=0,\text{ }a(0)=a_{0}%
>0,\text{ }\overset{\cdot}{a}(0)=a_{1}
f(\eta)=\xi\sqrt{-\frac{1}{\xi}\eta^{2}+\left( \frac{\alpha}{\xi}\right)
^{2}}% \end{array} \right. \end{equation}
where with and are
arbitrary constants.\newline Our analytical solutions could provide concrete
examples for testing the validation and stabilities of numerical methods for
the systems.Comment: 5 more figures can be found in the corresponding journal paper (J.
Math. Phys. 51, 093524 (2010) ). Key Words: 2-Component Camassa-Holm
Equations, Shallow Water System, Analytical Solutions, Blowup, Global,
Self-Similar, Separation Method, Construction of Solutions, Moving Boundar
An estimate for the Morse index of a Stokes wave
Stokes waves are steady periodic water waves on the free surface of an
infinitely deep irrotational two dimensional flow under gravity without surface
tension. They can be described in terms of solutions of the Euler-Lagrange
equation of a certain functional. This allows one to define the Morse index of
a Stokes wave. It is well known that if the Morse indices of the elements of a
set of non-singular Stokes waves are bounded, then none of them is close to a
singular one. The paper presents a quantitative variant of this result.Comment: This version contains an additional reference and some minor change
High-performance fiber/epoxy composite pressure vessels
Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended
Acoustoelectric effect in a finite-length ballistic quantum channel
The dc current induced by a coherent surface acoustic wave (SAW) of wave
vector q in a ballistic channel of length L is calculated. The current contains
two contributions, even and odd in q. The even current exists only in a
asymmetric channel, when the electron reflection coefficients r_1 and r_2 at
both channel ends are different. The direction of the even current does not
depend on the direction of the SAW propagation, but is reversed upon
interchanging r_1 and r_2. The direction of the odd current is correlated with
the direction of the SAW propagation, but is insensitive to the interchange of
r_1 and r_2. It is shown that both contributions to the current are non zero
only when the electron reflection coefficients at the channel ends are energy
dependent. The current exhibits geometric oscillations as function of qL. These
oscillations are the hallmark of the coherence of the SAW and are completely
washed out when the current is induced by a flux of non-coherent phonons. The
results are compared with those obtained previously by different methods and
under different assumptions.Comment: 7 pages, 2 figure
Snail Kite Nest Success and Water Levels : A Reply to Beissinger and Snyder
Beissinger and Snyder present a commentary on our recent paper on spatial and temporal variability in nest success of Snail Kites (Rostrhamus sociabilis) in Florida (Dreitz et al. 2001). Beissinger and Snyder reanalyze a subset of data presented in our original paper to show that water levels have a significant influence on nest success. To make their argument, the authors conduct separate analyses for 5 of the original 11 wetlands; including only those having the most data. We agree with Beissinger and Snyder that water levels can affect nest success in some areas or years, as we stated in Dreitz et al. (2001). However, the purpose of our original paper was to examine the influences of nest success over broad spatial and temporal scales. When viewed in this context, using a meta-analysis, water levels alone explain only a small amount of the observed variation in nest success. One of the advantages of using a meta-analysis is that it uses all of the available data to provide an indication of the overall magnitude of an effect, which can easily be misinterpreted when viewed in a narrower context of individual study sites. We discuss the management implication of these alternative perspectives on water levels in light of their effect on habitat quality and persistence
Steep sharp-crested gravity waves on deep water
A new type of steady steep two-dimensional irrotational symmetric periodic
gravity waves on inviscid incompressible fluid of infinite depth is revealed.
We demonstrate that these waves have sharper crests in comparison with the
Stokes waves of the same wavelength and steepness. The speed of a fluid
particle at the crest of new waves is greater than their phase speed.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
- …