221 research outputs found
Maximal-intensity exercise does not fully restore muscle pyruvate dehydrogenase complex activation after 3 days of high-fat dietary intake
Background & aims: Exercise activates muscle pyruvate dehydrogenase complex (PDC), but moderate intensity exercise fails to fully activate muscle PDC after high-fat diet [1]. We investigated whether maximal intensity exercise overcomes this inhibition.
Methods: Quadriceps femoris muscle biopsy samples were obtained from healthy males at rest, and after 46 and 92 electrically-evoked maximal intermittent isometric contractions, which were preceded by 3 days of either low- (18%) or high- (69%) isocaloric dietary fat intake (LFD and HFD, respectively).
Results: The ratio of PDCa (active form) to total PDCt (fully activated) at rest was 50% less after HFD (0.32 ± 0.01 vs 0.15 ± 0.01; P<0.05). This ratio increased to 0.77 ± 0.06 after 46 contractions (P<0.001) and to 0.98 ± 0.07 after 92 contractions (P<0.001) in LFD. The corresponding values after HFD were less (0.54 ± 0.06; P<0.01 and 0.70 ± 0.07; P<0.01, respectively). Resting muscle acetyl-CoA and acetylcarnitine content was greater after HFD than LFD (both P<0.05), but their rate of accumulation in the former was reduced during contraction. Muscle lactate content after 92 contractions was 30% greater after HFD (P<0.05). Muscle force generation during contraction was no different between interventions, but HFD lengthened muscle relaxation time (P<0.05). Daily urinary total carnitine excretion after HFD was 2.5-fold greater than after LFD (P<0.01).
Conclusions: A bout of maximal intense exercise did not overcome dietary fat-mediated inhibition of muscle pyruvate dehydrogenase complex activation, and was associated with greater muscle lactate accumulation, as a result of lower PDC flux, and increased muscle relaxation time
On the incompatibility of strains and its application to mesoscopic studies of plasticity
Structural transitions are invariably affected by lattice distortions. If the
body is to remain crack-free, the strain field cannot be arbitrary but has to
satisfy the Saint-Venant compatibility constraint. Equivalently, an
incompatibility constraint consistent with the actual dislocation network has
to be satisfied in media with dislocations. This constraint can be incorporated
into strain-based free energy functionals to study the influence of
dislocations on phase stability. We provide a systematic analysis of this
constraint in three dimensions and show how three incompatibility equations
accommodate an arbitrary dislocation density. This approach allows the internal
stress field to be calculated for an anisotropic material with spatially
inhomogeneous microstructure and distribution of dislocations by minimizing the
free energy. This is illustrated by calculating the stress field of an edge
dislocation and comparing it with that of an edge dislocation in an infinite
isotropic medium. We outline how this procedure can be utilized to study the
interaction of plasticity with polarization and magnetization.Comment: 6 pages, 2 figures; will appear in Phys. Rev.
Mitochondrial DNA copy number associates with insulin sensitivity and aerobic capacity, and differs between sedentary, overweight middle-aged males with and without type 2 diabetes
Background/objectives: Increased risk of type 2 diabetes mellitus (T2DM) is linked to impaired muscle mitochondrial function and reduced mitochondrial DNA copy number (mtDNAnum). However, studies have failed to control for habitual physical activity levels, which directly influences both mtDNA copy number and insulin sensitivity. We, therefore, examined whether physical conditioning status (maximal oxygen uptake, V̇O2max) was associated with skeletal muscle mitochondrial volume and mtDNAnum, and was predictive of T2DM in overweight, middle-aged men.Methods: Whole-body physiological (ISI-insulin sensitivity index, HOMA-IR, V̇O2max) and muscle biochemical/molecular (vastus lateralis; mtDNAnum, mitochondrial and glycolytic enzymes activity, lipid content and markers of lipid peroxidation) measurements were performed in 3 groups of overweight, middle-aged male volunteers (n=10 per group): sedentary T2DM (ST2DM); sedentary control (SC) and non-sedentary control (NSC), who differed in aerobic capacity (ST2D
Realization of the mean-field universality class in spin-crossover materials
In spin-crossover materials, the volume of a molecule changes depending on
whether it is in the high-spin (HS) or low-spin (LS) state. This change causes
distortion of the lattice. Elastic interactions among these distortions play an
important role for the cooperative properties of spin-transition phenomena. We
find that the critical behavior caused by this elastic interaction belongs to
the mean-field universality class, in which the critical exponents for the
spontaneous magnetization and the susceptibility are and , respectively. Furthermore, the spin-spin correlation function is a
constant at long distances, and it does not show an exponential decay in
contrast to short-range models. The value of the correlation function at long
distances shows different size-dependences: , , and
constant for temperatures above, at, and below the critical temperature,
respectively. The model does not exhibit clusters, even near the critical
point. We also found that cluster growth is suppressed in the present model and
that there is no critical opalescence in the coexistence region. During the
relaxation process from a metastable state at the end of a hysteresis loop,
nucleation phenomena are not observed, and spatially uniform configurations are
maintained during the change of the fraction of HS and LS. These
characteristics of the mean-field model are expected to be found not only in
spin-crossover materials, but also generally in systems where elastic
distortion mediates the interaction among local states.Comment: 13 pages, 16 figure
Effects of Endotoxaemia on Protein Metabolism in Rat Fast-Twitch Skeletal Muscle and Myocardium
It is unclear if the rat myocardium undergoes the same rapid reductions in protein content that are classically observed in fast-twitch skeletal muscle during endotoxaemia.To investigate this further, and to determine if there is any divergence in the response of skeletal muscle and myocardium in the mechanisms that are thought to be largely responsible for eliciting changes in protein content, Sprague Dawley rats were implanted with vascular catheters and administered lipopolysaccharide (LPS; 150 microg kg(-1) h(-1)) intravenously for 2 h, 6 h or 24 h (saline administered control animals were also included), after which the extensor digitorum longus (EDL) and myocardium were removed under terminal anaesthesia. The protein-to-DNA ratio, a marker of protein content, was significantly reduced in the EDL following 24 h LPS administration (23%; P<0.05), but was no different from controls in the myocardium. At the same time point, a significant increase in MAFbx/atrogin-1 and MuRF1 mRNA (3.7+/-0.7- and 19.5+/-1.9-fold increase vs. controls, respectively; P<0.05), in addition to protein levels of alpha1-3, 5-7 subunits of the 20S proteasome, were observed in EDL but not myocardium. In contrast, elevations in phosphorylation of p70 S6K residues Thr(421)/Ser(424), and 4E-BP1 residues Thr(37)/Thr(46) (P<0.05), consistent with an elevation in translation initiation, were seen exclusively in the myocardium of LPS-treated animals.In summary, these findings suggest that the myocardium does not undergo the same catabolic response as skeletal muscle during early endotoxaemia, partly due to the absence of transcriptional and signalling events in the myocardium typically associated with increased muscle proteolysis and the suppression of protein synthesis
Alternative Winemaking Techniques to Improve the Content of Phenolic and Aromatic Compounds in Wines
In this study, a complete physical–chemical analysis was performed for Fetească neagră wine, aged with oak staves. Red wine samples were taken from grape varieties grown in Northeast Romania and produced during 2013 vintage. At the end of the fermentation process, four oak mini staves (1 cm width × 10 cm length × 1 cm thickness) from heavy toasted French oak were added to 5 L of red wine. Samples were aged using two time periods, respectively at 1.5 and 3 months, in a room at 14–16 °C. Results showed that the initial content of total phenolic decreased during ageing, from 931.1 mg catechin/L at 1.5 months to 775.4 mg catechin/L at 3 months. In contrast, the initial content of total antioxidant activity increased after the same period of ageing to 13.3 mM Trolox as compared to the aged wines for 1.5 months, at 12.8 mM Trolox. The corregram representing the relationship between the total phenols, total antioxidant activity (TAA) and their fractions and CieLab parameters was performed. Thirty-seven minor volatile compounds were quantified by stir bars sorptive extraction and gas chromatography coupled with mass spectrometry (SBSE-GC-MS). An increase in odor activity value (OAV) with ageing time was observed, especially for fruity, fatty and woody series. The oak staves used in ageing processes can contribute positively to the aromatic profile of wines and could be considered a good choice for producing short-aged wines
Effects of Space Charge, Dopants, and Strain Fields on Surfaces and Grain Boundaries in YBCO Compounds
Statistical thermodynamical and kinetically-limited models are applied to
study the origin and evolution of space charges and band-bending effects at low
angle [001] tilt grain boundaries in YBaCuO and the effects of Ca
doping upon them. Atomistic simulations, using shell models of interatomic
forces, are used to calculate the energetics of various relevant point defects.
The intrinsic space charge profiles at ideal surfaces are calculated for two
limits of oxygen contents, i.e. YBaCuO and YBaCuO. At
one limit, O, the system is an insulator, while at O, a metal. This is
analogous to the intrinsic and doping cases of semiconductors. The site
selections for doping calcium and creating holes are also investigated by
calculating the heat of solution. In a continuum treatment, the volume of
formation of doping calcium at Y-sites is computed. It is then applied to study
the segregation of calcium ions to grain boundaries in the Y-123 compound. The
influences of the segregation of calcium ions on space charge profiles are
finally studied to provide one guide for understanding the improvement of
transport properties by doping calcium at grain boundaries in Y-123 compound.Comment: 13 pages, 5 figure
The effect of age and unilateral leg immobilisation for 2 weeks on substrate ulilisation during moderate-intensity exercise in human skeletal muscle
Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20±1W(_50% maximalwork capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins.Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratoryquotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation
- …