31 research outputs found

    Specific Activation of Estrogen Receptor Alpha and Beta Enhances Male Sexual Behavior and Neuroplasticity in Male Japanese Quail

    Get PDF
    Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events

    A Review of the Status of Brain Structure Research in Transsexualism

    Get PDF

    Age-related changes in the morphology of tanycytes in the human female infundibular nucleus/median eminence.

    Full text link
    Tanycytes are emerging as key players in the neuroendocrine control of gonadotrophin-releasing hormone (GnRH) release. Rodent studies have demonstrated that the structural relationship between tanycytes and GnRH terminals in the median eminence is highly dynamic, regulated by gonadal steroids and undergoes age-related changes. The present study aimed to determine whether the number and organisation of tanycytes changes throughout life in the female infundibular nucleus/median eminence (INF/ME) region. Post-mortem hypothalamic tissues were collected at the Netherlands Brain Bank and were stained for vimentin by immunohistochemistry. Hypothalami of 22 control female subjects were categorised into three periods: infant/prepubertal, adult and elderly. We measured the fractional area covered by vimentin immunoreactivity in the INF. Qualitative analysis demonstrated a remarkable parallel organisation of vimentin-immunoreactive processes during the infant/prepubertal and adult periods. During the elderly period, this organisation was largely lost. Semi-quantitatively, the fractional area covered in vimentin immunoreactivity was significantly higher at the infant/prepubertal compared to the adult period and almost reached statistical significance compared to the elderly period. By contrast, the number of tanycyte cell bodies did not appear to change throughout life. The results of the present study thus demonstrate that the number and structure of tanycytic processes are altered during ageing, suggesting that tanycytes might be involved in the age-related changes observed in GnRH release

    Rapid changes in production and behavioral action of estrogens.

    Full text link
    It is well established that sex steroid hormones bind to nuclear receptors, which then act as transcription factors to control brain sexual differentiation and the activation of sexual behaviors. Estrogens locally produced in the brain exert their behavioral effects in this way but mounting evidence indicates that estrogens also can influence brain functioning more rapidly via non-genomic mechanisms. We recently reported that, in Japanese quail, the activity of preoptic estrogen synthase (aromatase) can be modulated quite rapidly (within minutes) by non-genomic mechanisms, including calcium-dependent phosphorylations. Behavioral studies further demonstrated that rapid changes in estrogen bioavailability, resulting either from a single injection of a high dose of estradiol or from the acute inhibition of aromatase activity, significantly affect the expression of both appetitive and consummatory aspects of male sexual behavior with latencies ranging between 15 and 30 min. Together these data indicate that the bioavailability of estrogens in the brain can change on different time-scales (long- and short-term) that match well with the genomic and non-genomic actions of this steroid and underlie two complementary mechanisms through which estrogens modulate behavior. Estrogens produced locally in the brain should therefore be considered not only as neuroactive steroids but they also display many (if not all) functional characteristics of neuromodulators and perhaps neurotransmitters

    Dirithromycin versus amoxiclav in the treatment of acute exacerbations of chronic bronchitis

    No full text
    A total of 334 patients with acute exacerbation of chronic bronchitis were treated with either dirithromycin for 5 days (n = 169) or amoxiclav for 7-10 days (n = 165) in an open randomized trial. The efficacy and tolerability of the two drugs were compared. There was no statistically significant difference in outcome between the two treatment arms. Clinical success (cure or improvement) was obtained in 94.5% and 93.1% of patients treated with dirithromycin and amoxiclav, respectively. Adverse events (mostly gastrointestinal) occurred in both groups, but led to discontinuation of treatment (in only seven patients). We conclude that the two drugs are equally efficacious and safe
    corecore