3,198 research outputs found

    Fractional Generalization of Gradient Systems

    Full text link
    We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems.Comment: 11 pages, LaTe

    Path Integral for Quantum Operations

    Full text link
    In this paper we consider a phase space path integral for general time-dependent quantum operations, not necessarily unitary. We obtain the path integral for a completely positive quantum operation satisfied Lindblad equation (quantum Markovian master equation). We consider the path integral for quantum operation with a simple infinitesimal generator.Comment: 24 pages, LaTe

    On the Positivity Problem for Simple Linear Recurrence Sequences

    Full text link
    Given a linear recurrence sequence (LRS) over the integers, the Positivity Problem} asks whether all terms of the sequence are positive. We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy.Comment: arXiv admin note: substantial text overlap with arXiv:1307.277

    Conservation Laws and Hamilton's Equations for Systems with Long-Range Interaction and Memory

    Full text link
    Using the fact that extremum of variation of generalized action can lead to the fractional dynamics in the case of systems with long-range interaction and long-term memory function, we consider two different applications of the action principle: generalized Noether's theorem and Hamiltonian type equations. In the first case, we derive conservation laws in the form of continuity equations that consist of fractional time-space derivatives. Among applications of these results, we consider a chain of coupled oscillators with a power-wise memory function and power-wise interaction between oscillators. In the second case, we consider an example of fractional differential action 1-form and find the corresponding Hamiltonian type equations from the closed condition of the form.Comment: 30 pages, LaTe

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe
    • …
    corecore