204 research outputs found

    Merger Transitions in Brane--Black-Hole Systems: Criticality, Scaling, and Self-Similarity

    Get PDF
    We propose a toy model for study merger transitions in a curved spaceime with an arbitrary number of dimensions. This model includes a bulk N-dimensional static spherically symmetric black hole and a test D-dimensional brane interacting with the black hole. The brane is asymptotically flat and allows O(D-1) group of symmetry. Such a brane--black-hole (BBH) system has two different phases. The first one is formed by solutions describing a brane crossing the horizon of the bulk black hole. In this case the internal induced geometry of the brane describes D-dimensional black hole. The other phase consists of solutions for branes which do not intersect the horizon and the induced geometry does not have a horizon. We study a critical solution at the threshold of the brane-black-hole formation, and the solutions which are close to it. In particular, we demonstrate, that there exists a striking similarity of the merger transition, during which the phase of the BBH-system is changed, both with the Choptuik critical collapse and with the merger transitions in the higher dimensional caged black-hole--black-string system.Comment: 9 pages 2 figures; additional remarks and references are added at Section IX "Discussion

    Black strings in (4+1)-dimensional Einstein-Yang-Mills theory

    Full text link
    We study two classes of static uniform black string solutions in a (4+1)-dimensional SU(2) Einstein-Yang-Mills model. These configurations possess a regular event horizon and corresponds in a 4-dimensional picture to axially symmetric black hole solutions in an Einstein-Yang-Mills-Higgs-U(1)-dilaton theory. In this approach, one set of solutions possesses a nonzero magnetic charge, while the other solutions represent black holes located in between a monopole-antimonopole pair. A detailed analysis of the solutions' properties is presented, the domain of existence of the black strings being determined. New four dimensional solutions are found by boosting the five dimensional configurations. We also present an argument for the non-existence of finite mass hyperspherically symmetric black holes in SU(2) Einstein-Yang-Mills theory.Comment: 19 Revtex pages, 27 eps-figures; discussion on rotating black holes modifie

    Charge Influence On Mini Black Hole's Cross Section

    Full text link
    In this work we study the electric charge effect on the cross section production of charged mini black holes (MBH) in accelerators. We analyze the charged MBH solution using the {\it fat brane} approximation in the context of the ADD model. The maximum charge-mass ratio condition for the existence of a horizon radius is discussed. We show that the electric charge causes a decrease in this radius and, consequently, in the cross section. This reduction is negligible for protons and light ions but can be important for heavy ions.Comment: 4 pages, 0 figure. To be published in Int. J. Mod. Phys. D

    Stability of Topological Black Holes

    Full text link
    We explore the classical stability of topological black holes in d-dimensional anti-de Sitter spacetime, where the horizon is an Einstein manifold of negative curvature. According to the gauge invariant formalism of Ishibashi and Kodama, gravitational perturbations are classified as being of scalar, vector, or tensor type, depending on their transformation properties with respect to the horizon manifold. For the massless black hole, we show that the perturbation equations for all modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of potential gravitational instabilities. We establish a necessary and sufficient condition for stability, in terms of the eigenvalues λ\lambda of the Lichnerowicz operator on the horizon manifold, namely λ≥−4(d−2)\lambda \geq -4(d-2). For the case of negative mass black holes, we show that a sufficient condition for stability is given by λ≥−2(d−3)\lambda \geq -2(d-3).Comment: 20 pages, Latex, v2 refined analysis of boundary conditions in dimensions 4,5,6, additional reference

    Electromagnetic Properties of Kerr-Anti-de Sitter Black Holes

    Full text link
    We examine the electromagnetic properties of Kerr-anti-de Sitter (Kerr-AdS) black holes in four and higher spacetime dimensions. Assuming that the black holes may carry a test electric charge we show that the Killing one-form which represents the difference between the timelike generators in the spacetime and in the reference background can be used as a potential one-form for the associated electromagnetic field. In four dimensions the potential one-form and the Kerr-AdS metric with properly re-scaled mass parameter solve the Einstein-Maxwell equations, thereby resulting in the familiar Kerr-Newman-AdS solution. We solve the quartic equation governing the location of the event horizons of the Kerr-Newman-AdS black holes and present closed analytic expressions for the radii of the horizons. We also compute the gyromagnetic ratio for these black holes and show that it corresponds to g=2 just as for ordinary black holes in asymptotically flat spacetime. Next, we compute the gyromagnetic ratio for the Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it tends to g=2 irrespective of the spacetime dimension. Finally, we consider the case of a five dimensional Kerr-AdS black hole with two angular momenta and show that it possesses two distinct gyromagnetic ratios in accordance with its two orthogonal 2-planes of rotation. In the special case of two equal angular momenta, the two gyromagnetic ratios merge into one leading to g=4 at the maximum angular velocities of rotation.Comment: Typos corrected; 31 pages, REVTe

    Stationary and Axisymmetric Solutions of Higher-Dimensional General Relativity

    Full text link
    We study stationary and axisymmetric solutions of General Relativity, i.e. pure gravity, in four or higher dimensions. D-dimensional stationary and axisymmetric solutions are defined as having D-2 commuting Killing vector fields. We derive a canonical form of the metric for such solutions that effectively reduces the Einstein equations to a differential equation on an axisymmetric D-2 by D-2 matrix field living in three-dimensional flat space (apart from a subclass of solutions that instead reduce to a set of equations on a D-2 by D-2 matrix field living in two-dimensional flat space). This generalizes the Papapetrou form of the metric for stationary and axisymmetric solutions in four dimensions, and furthermore generalizes the work on Weyl solutions in four and higher dimensions. We analyze then the sources for the solutions, which are in the form of thin rods along a line in the three-dimensional flat space that the matrix field can be seen to live in. As examples of stationary and axisymmetric solutions, we study the five-dimensional rotating black hole and the rotating black ring, write the metrics in the canonical form and analyze the structure of the rods for each solution.Comment: 43 pages, v2: typos fixed, refs adde

    Trapped surfaces, horizons and exact solutions in higher dimensions

    Get PDF
    A very simple criterion to ascertain if (D-2)-surfaces are trapped in arbitrary D-dimensional Lorentzian manifolds is given. The result is purely geometric, independent of the particular gravitational theory, of any field equations or of any other conditions. Many physical applications arise, a few shown here: a definition of general horizon, which reduces to the standard one in black holes/rings and other known cases; the classification of solutions with a (D-2)-dimensional abelian group of motions and the invariance of the trapping under simple dimensional reductions of the Kaluza-Klein/string/M-theory type. Finally, a stronger result involving closed trapped surfaces is presented. It provides in particular a simple sufficient condition for their absence.Comment: 7 pages, no figures, final version to appear in Class. Quantum Gra

    Constants of Geodesic Motion in Higher-Dimensional Black-Hole Spacetimes

    Full text link
    In [arXiv:hep-th/0611083] we announced the complete integrability of geodesic motion in the general higher-dimensional rotating black-hole spacetimes. In the present paper we prove all the necessary steps leading to this conclusion. In particular, we demonstrate the independence of the constants of motion and the fact that they Poisson commute. The relation to a different set of constants of motion constructed in [arXiv:hep-th/0612029] is also briefly discussed.Comment: 8 pages, no figure

    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter vacua in arbitrary dimension

    Full text link
    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter family of vacua are given, first in spacetime (generalizing a result due to Israel) and then for all dimensions DD (assuming a D−2D-2 sphere). It is shown that these coordinates offer important advantages over the well known Kruskal - Szekeres procedure.Comment: 12 pages revtex4 5 figures in color. Higher resolution version at http://www.astro.queensu.ca/~lake/regularcoordinates.pd
    • …
    corecore