270 research outputs found

    Data-Driven Modeling and Regulation of Aircraft Brakes Degradation via Antiskid Controllers

    Get PDF
    In ground vehicles, braking actuator degradation and tire consumption do not represent a significant maintenance cost as the lifespan of both components, at least in common situations, is rather long. In the aeronautical context, and for aircraft in particular, instead, braking actuator degradation and tire consumption significantly contribute to an aircraft maintenance cost due to the frequency of their replacement. This is mainly due to the fact that aircraft braking maneuvers last significantly longer than those in the automotive context. So that the antilock braking system is always active during the braking maneuver, making its impact on the consumption of the two components significant. This work proposes an innovative data-driven model of brake and tire degradation, showing how they are related to the antiskid controller parameters. The analysis is carried out in a MATLAB/Simulink environment on a single wheel rigid body model, validated experimentally, which includes all the nonlinear effects peculiar of the aeronautic context. The results show that by using an appropriate antiskid control approach, it is possible to directly regulate the consumption of these components while at the same time guaranteeing the required braking performance

    Shock Absorber Leakage Impact on Aircraft Lateral Stability During Ground Handling Maneuvers

    Get PDF
    Aircraft braking maneuvers are safety-critical on-ground motions that exhibit complex dynamics and significant dependence on system operating conditions. The fundamental interface between the aircraft and the ground is the landing gear. Among the landing gear components, the shock absorbers may be subject to gas leakage during their lifetime, which is an anomaly that could compromise the lateral stability properties of the aircraft on the operating regimes found during braking maneuvers. In this paper, an explicit link is established between main landing gear shock absorber leakage and aircraft lateral stability. To investigate lateral stability, a high-fidelity multibody nonlinear aircraft simulator is developed in a MATLAB/Simulink framework and validated against experimental data. To generate insight into the problem and to quantify shock absorber leakage impact on aircraft lateral stability, two simple but descriptive analytical models are also developed, each one on a different operating mode of the system. The analysis of the models reveals that shock absorber leakage can have a significant effect on aircraft lateral stability, especially at high velocities and highly damped nose wheel steering conditions. The models developed in this work may be used by aircraft control system designers to come up with more effective lateral stability controllers in the event of main landing gear shock absorber leakage

    Active and Data-driven Health and Usage Monitoring of Aircraft Brakes

    Get PDF
    Aircraft brakes are a safety-critical subsystem, and their prolonged use in each landing maneuver makes them subject to significant wear. Thus, it is crucial to devise efficient methods for monitoring their correct functioning and their health and usage status using the signals available in the Brake Control Unit. This paper proposes and validates an innovative data-driven approach to this problem. The proposed architecture is integrated with the Anti-lock Braking System algorithm providing combined health monitoring and anomaly detection for aircraft brakes in addition to an online estimate of the residual useful life of these components

    Fostering the use of sharing mobility solutions via control-oriented policy design

    Get PDF
    In the quest for reducing greenhouse gas (GHG) emissions, mobility plays a lion's role. In particular, moving from ownership to usership has profound individual implications, as vehicles are in many cultures proxy of social status and power symbols. To sustain the shift to shared mobility, we use data to extrapolate the main socio-economic drivers that guide the adoption of this model, the so-called Sharing-DNA, ultimately building a dynamical model characterizing the evolution of individual inclinations over time. This novel representation allows us to exploit optimal control tools for the design of innovative human-centric policies to foster the adoption of sharing mobility solutions. The results here presented demonstrate the potential impact of individualized closed-loop policies in promoting this crucial behavioral change.</p

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien
    • …
    corecore