15,862 research outputs found

    Comment on "Efimov States and their Fano Resonances in a Neutron-Rich Nucleus"

    Full text link
    By introducing a mass asymmetry in a non-Borromean three-body system, without changing the energy relations, the virtual state pole cannot move from the negative real axis of the complex energy plane (with nonzero width) and become a resonance, because the analytical structure of the unitarity cuts remains the same.Comment: To be published in PR

    Radii in weakly-bound light halo nuclei

    Full text link
    A systematic study of the root-mean-square distance between the constituents of weakly-bound nuclei consisting of two halo neutrons and a core is performed using a renormalized zero-range model. The radii are obtained from a universal scaling function that depends on the mass ratio of the neutron and the core, as well as on the nature of the subsystems, bound or virtual. Our calculations are qualitatively consistent with recent data for the neutron-neutron root-mean-square distance in the halo of 11^{11}Li and 14^{14}Be nuclei

    Scaling functions of two-neutron separation energies of 20C^{20}C with finite range potentials

    Full text link
    The behaviour of an Efimov excited state is studied within a three-body Faddeev formalism for a general neutron-neutron-core system, where neutron-core is bound and neutron-neutron is unbound, by considering zero-ranged as well as finite-ranged two-body interactions. For the finite-ranged interactions we have considered a one-term separable Yamaguchi potential. The main objective is to study range corrections in a scaling approach, with focus in the exotic carbon halo nucleus 20C^{20}C

    Effective range from tetramer dissociation data for cesium atoms

    Full text link
    The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances, where deviations of experimental values from universal model predictions are associated to effective range corrections. The effective range correction is extracted, with a weighted average given by 3.9±0.8RvdW\pm 0.8 R_{vdW}, where RvdWR_{vdW} is the van der Waals length scale; which is consistent with the van der Waals potential tail for the Cs2Cs_2 system. The method can be generally applied to other cold atom experimental setups to determine the contribution of the effective range to the tetramer dissociation position.Comment: A section for two-, three- and four-boson bound state formalism is added, accepted for publication in Phys. Rev.
    • …
    corecore