98 research outputs found

    First Occurrence of \u3ci\u3eHippodamia Variegata\u3c/i\u3e (Goeze) (Coleoptera: Coccinellidae) in Ohio

    Get PDF
    (excerpt) Ladybird beetles, or coccinellids (Coleoptera: Coccinellidae), are significant arthropod predators in a variety of terrestrial ecosystems. Numerous classical biological control projects undertaken over the last 120 years in North America have involved importation of exotic ladybird beetle species for the control of invasive insect species in annual and perennial agricultural production systems

    E. coli metabolic protein aldehydealcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    Get PDF
    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosom

    The N-Terminus of GalE Induces tmRNA Activity in Escherichia coli

    Get PDF
    BACKGROUND: The tmRNA quality control system recognizes stalled translation complexes and facilitates ribosome recycling in a process termed 'ribosome rescue'. During ribosome rescue, nascent chains are tagged with the tmRNA-encoded SsrA peptide, which targets tagged proteins for degradation. In Escherichia coli, tmRNA rescues ribosomes arrested on truncated messages, as well as ribosomes that are paused during elongation and termination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a new translational pausing determinant that leads to SsrA peptide tagging of the E. coli GalE protein (UDP-galactose 4-epimerase). GalE chains are tagged at more than 150 sites, primarily within distinct clusters throughout the C-terminal domain. These tagging sites do not correspond to rare codon clusters and synonymous recoding of the galE gene had little effect on tagging. Moreover, tagging was largely unaffected by perturbations that either stabilize or destabilize the galE transcript. Examination of GalE-thioredoxin (TrxA) fusion proteins showed that the GalE C-terminal domain is no longer tagged when fused to an N-terminal TrxA domain. Conversely, the N-terminus of GalE induced tagging within the fused C-terminal TrxA domain. CONCLUSIONS/SIGNIFICANCE: These findings suggest that translation of the GalE N-terminus induces subsequent tagging of the C-terminal domain. We propose that co-translational maturation of the GalE N-terminal domain influences ribosome pausing and subsequent tmRNA activity
    corecore