18 research outputs found

    Retention of mouth-to-mouth, mouth-to-mask and mouth-to-face shield ventilation

    Get PDF
    Background: Retention of mouth-to-mouth, mouth-to-mask and mouth-to-face shield ventilation techniques is poorly understood.Methods: A prospective randomised clinical trial was undertaken in January 2004 in 70 candidates randomly assigned to training in mouth-to-mouth, mouth-to-mask or mouth-to-face shield ventilation. Each candidate was trained for 10 min, after which tidal volume, respiratory rate, minute volume, peak airway pressure and the presence or absence of stomach inflation were measured. 58 subjects were reassessed 1 year later and study parameters were recorded again. Data were analysed with ANOVA, \textgreekq2 and McNemar tests.Results: Tidal volume, minute volume, peak airway pressure, ventilation rate and stomach inflation rate increased significantly at reassessment with all ventilation techniques compared with the initial assessment. However, at reassessment, mean (SD) tidal volume (960 (446) vs 1008 (366) vs 1402 (302) ml; p<0.05), minute volume (12 (5) vs 13 (7) vs 18 (3) l/min; p<0.05), peak airway pressure (14 (8) vs 17 (13) vs 25 (8) cm H2O; p<0.05) and stomach inflation rate (63% vs 58% vs 100%; p<0.05) were significantly lower with mouth-to-mask and mouth-to-face shield ventilation than with mouth-to-mouth ventilation. The ventilation rate at reassessment did not differ significantly between the ventilation techniques.Conclusions: One year after a single episode of ventilation training, lay persons tended to hyperventilate; however, the degree of hyperventilation and resulting stomach inflation were lower when a mouth-to-mask or a face shield device was employed. Regular training is therefore required to retain ventilation skills; retention of skills may be better with ventilation devices

    Multiple trauma management in mountain environments - a scoping review : Evidence based guidelines of the International Commission for Mountain Emergency Medicine (ICAR MedCom). Intended for physicians and other advanced life support personnel.

    Get PDF
    BACKGROUND Multiple trauma in mountain environments may be associated with increased morbidity and mortality compared to urban environments. OBJECTIVE To provide evidence based guidance to assist rescuers in multiple trauma management in mountain environments. ELIGIBILITY CRITERIA All articles published on or before September 30th 2019, in all languages, were included. Articles were searched with predefined search terms. SOURCES OF EVIDENCE PubMed, Cochrane Database of Systematic Reviews and hand searching of relevant studies from the reference list of included articles. CHARTING METHODS Evidence was searched according to clinically relevant topics and PICO questions. RESULTS Two-hundred forty-seven articles met the inclusion criteria. Recommendations were developed and graded according to the evidence-grading system of the American College of Chest Physicians. The manuscript was initially written and discussed by the coauthors. Then it was presented to ICAR MedCom in draft and again in final form for discussion and internal peer review. Finally, in a face-to-face discussion within ICAR MedCom consensus was reached on October 11th 2019, at the ICAR fall meeting in Zakopane, Poland. CONCLUSIONS Multiple trauma management in mountain environments can be demanding. Safety of the rescuers and the victim has priority. A crABCDE approach, with haemorrhage control first, is central, followed by basic first aid, splinting, immobilisation, analgesia, and insulation. Time for on-site medical treatment must be balanced against the need for rapid transfer to a trauma centre and should be as short as possible. Reduced on-scene times may be achieved with helicopter rescue. Advanced diagnostics (e.g. ultrasound) may be used and treatment continued during transport

    Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima

    No full text
    Metschnikowia pulcherrima synthesises the pigment pulcherrimin, from cyclodileucine (cyclo(Leu‐Leu)) as a precursor, and exhibits strong antifungal activity against notorious plant pathogenic fungi. This yeast therefore has great potential for biocontrol applications against fungal diseases; particularly in the phyllosphere where this species is frequently found. To elucidate the molecular basis of the antifungal activity of M. pulcherrima, we compared a wild‐type strain with a spontaneously occurring, pigmentless, weakly antagonistic mutant derivative. Whole genome sequencing of the wild‐type and mutant strains identified a point mutation that creates a premature stop codon in the transcriptional regulator gene SNF2 in the mutant. Complementation of the mutant strain with the wild‐type SNF2 gene restored pigmentation and recovered the strong antifungal activity. Mass spectrometry (UPLC HR HESI‐MS) proved the presence of the pulcherrimin precursors cyclo(Leu‐Leu) and pulcherriminic acid and identified new precursor and degradation products of pulcherriminic acid and/or pulcherrimin. All of these compounds were identified in the wild‐type and complemented strain, but were undetectable in the pigmentless snf2 mutant strain. These results thus identify Snf2 as a regulator of antifungal activity and pulcherriminic acid biosynthesis in M. pulcherrima and provide a starting point for deciphering the molecular functions underlying the antagonistic activity of this yeast
    corecore