1,211 research outputs found
Electronic Structure of Multiple Dots
We calculate, via spin density functional theory (SDFT) and exact
diagonalization, the eigenstates for electrons in a variety of external
potentials, including double and triple dots. The SDFT calculations employ
realistic wafer profiles and gate geometries and also serve as the basis for
the exact diagonalization calculations. The exchange interaction J between
electrons is the difference between singlet and triplet ground state energies
and reflects competition between tunneling and the exchange matrix element,
both of which result from overlap in the barrier. For double dots, a
characteristic transition from singlet ground state to triplet ground state
(positive to negative J) is calculated. For the triple dot geometry with 2
electrons we also find the electronic structure with exact diagonalization. For
larger electron number (18 and 20) we use only SDFT. In contrast to the double
dot case, the triple dot case shows a quasi-periodic fluctuation of J with
magnetic field which we attribute to periodic variations of the basis states in
response to changing flux quanta threading the triple dot structure.Comment: 3 pages, 4 figure
Inhomogeneous Nuclear Spin Flips
We discuss a feedback mechanism between electronic states in a double quantum
dot and the underlying nuclear spin bath. We analyze two pumping cycles for
which this feedback provides a force for the Overhauser fields of the two dots
to either equilibrate or diverge. Which of these effects is favored depends on
the g-factor and Overhauser coupling constant A of the material. The strength
of the effect increases with A/V_x, where V_x is the exchange matrix element,
and also increases as the external magnetic field B_{ext} decreases.Comment: 5 pages, 4 figures (jpg
Semiconductor quantum dots for electron spin qubits
We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for the generation of a local ac magnetic field in the vicinity of the dot. We observe photon-assisted tunnelling as well as pumping due to the ac voltage induced by the ac current driven through a wire in the vicinity of the dot, but no evidence for ESR so far. Analogue concepts for a double quantum dot and the hydrogen molecule are discussed in detail. Our experimental results in laterally coupled vertical double quantum dot device show that the Heitler–London model forms a good approximation of the two-electron wavefunction. The exchange coupling constant J is estimated. The relevance of this system for two-qubit gates, in particular the SWAP operation, is discussed. Density functional calculations reveal the importance of the gate electrode geometry in lateral quantum dots for the tunability of J in realistic two-qubit gates
Parallel magnetic field induced giant magnetoresistance in low density {\it quasi}-two dimensional layers
We provide a possible theoretical explanation for the recently observed giant
positive magnetoresistance in high mobility low density {\it quasi}-two
dimensional electron and hole systems. Our explanation is based on the strong
coupling of the parallel field to the {\it orbital} motion arising from the
{\it finite} layer thickness and the large Fermi wavelength of the {\it
quasi}-two dimensional system at low carrier densities.Comment: 4 pages with 4 figures. Accepted for Publication in Physical Review
  Letter
Dynamic Nuclear Polarization in Double Quantum Dots
We theoretically investigate the controlled dynamic polarization of lattice
nuclear spins in GaAs double quantum dots containing two electrons. Three
regimes of long-term dynamics are identified, including the build up of a large
difference in the Overhauser fields across the dots, the saturation of the
nuclear polarization process associated with formation of so-called "dark
states," and the elimination of the difference field. We show that in the case
of unequal dots, build up of difference fields generally accompanies the
nuclear polarization process, whereas for nearly identical dots, build up of
difference fields competes with polarization saturation in dark states. The
elimination of the difference field does not, in general, correspond to a
stable steady state of the polarization process.Comment: 4 pages, 2 figure
Gauge invariant grid discretization of Schr\"odinger equation
Using the Wilson formulation of lattice gauge theories, a gauge invariant
grid discretization of a one-particle Hamiltonian in the presence of an
external electromagnetic field is proposed. This Hamiltonian is compared both
with that obtained by a straightforward discretization of the continuous
Hamiltonian by means of balanced difference methods, and with a tight-binding
Hamiltonian. The proposed Hamiltonian and the balanced difference one are used
to compute the energy spectrum of a charged particle in a two-dimensional
parabolic potential in the presence of a perpendicular, constant magnetic
field. With this example we point out how a "naive" discretization gives rise
to an explicit breaking of the gauge invariance and to large errors in the
computed eigenvalues and corresponding probability densities; in particular,
the error on the eigenfunctions may lead to very poor estimates of the mean
values of some relevant physical quantities on the corresponding states. On the
contrary, the proposed discretized Hamiltonian allows a reliable computation of
both the energy spectrum and the probability densities.Comment: 7 pages, 4 figures, discussion about tight-binding Hamiltonians adde
- …
