15 research outputs found

    The Role of Whole Blood Impedance Aggregometry and Its Utilisation in the Diagnosis and Prognosis of Patients with Systemic Inflammatory Response Syndrome and Sepsis in Acute Critical Illness

    Get PDF
    Objective: To assess the prognostic and diagnostic value of whole blood impedance aggregometry in patients with sepsis and SIRS and to compare with whole blood parameters (platelet count, haemoglobin, haematocrit and white cell count). Methods: We performed an observational, prospective study in the acute setting. Platelet function was determined using whole blood impedance aggregometry (multiplate) on admission to the Emergency Department or Intensive Care Unit and at 6 and 24 hours post admission. Platelet count, haemoglobin, haematocrit and white cell count were also determined. Results: 106 adult patients that met SIRS and sepsis criteria were included. Platelet aggregation was significantly reduced in patients with severe sepsis/septic shock when compared to SIRS/uncomplicated sepsis (ADP: 90.7±37.6 vs 61.4±40.6; p<0.001, Arachadonic Acid 99.9±48.3 vs 66.3±50.2; p = 0.001, Collagen 102.6±33.0 vs 79.1±38.8; p = 0.001; SD ± mean)). Furthermore platelet aggregation was significantly reduced in the 28 day mortality group when compared with the survival group (Arachadonic Acid 58.8±47.7 vs 91.1±50.9; p<0.05, Collagen 36.6±36.6 vs 98.0±35.1; p = 0.001; SD ± mean)). However haemoglobin, haematocrit and platelet count were more effective at distinguishing between subgroups and were equally effective indicators of prognosis. Significant positive correlations were observed between whole blood impedance aggregometry and platelet count (ADP 0.588 p<0.0001, Arachadonic Acid 0.611 p<0.0001, Collagen 0.599 p<0.0001 (Pearson correlation)). Conclusions: Reduced platelet aggregometry responses were not only significantly associated with morbidity and mortality in sepsis and SIRS patients, but also correlated with the different pathological groups. Whole blood aggregometry significantly correlated with platelet count, however, when we adjust for the different groups we investigated, the effect of platelet count appears to be non-significant

    Computing the all-pairs quartet distance on a set of evolutionary trees. Unpublished

    No full text
    We present two algorithms for calculating the quartet distance between all pairs of trees in a set of binary evolutionary trees on a common set of species. The algorithms exploit common substructure among the trees to speed up the pairwise distance calculations thus performing significantly better on large sets of trees compared to performing distinct pairwise distance calculations, as we illustrate experimentally, where we see a speedup factor of around 130 in the best case. 1

    Computing the quartet distance between evolutionary trees of bounded degree. Unpublished

    No full text
    We present an algorithm for calculating the quartet distance between two evolutionary trees of bounded degree on a common set of n species. The previous best algorithm has running time O(d 2 n 2) when considering trees, where no node is of more than degree d. The algorithm developed herein has running time O(d 9 n log n)) which makes it the first algorithm for computing the quartet distance between non-binary trees which has a sub-quadratic worst case running time. 1

    CPN tools for editing, simulating, and analysing coloured Petri nets

    No full text
    CPN Tools is a tool for editing, simulating and analysing Coloured Petri Nets. The GUI is based on advanced interaction techniques, such as toolglasses, marking menus, and bi-manual interaction. Feedback facilities provide contextual error messages and indicate dependency relationships between net elements. The tool features incremental syntax checking and code generation which take place while a net is being constructed. A fast simulator efficiently handles both untimed and timed nets. Full and partial state spaces can be generated and analysed, and a standard state space report contains information such as boundedness properties and liveness properties. The functionality of the simulation engine and state space facilities are similar to the corresponding components in Design/CPN, which is a widespread tool for Coloured Petri Nets

    CPN Tools for editing, simulating, and analysing coloured Petri nets

    No full text
    Abstract. CPN Tools is a tool for editing, simulating and analysing Coloured Petri Nets. The GUI is based on advanced interaction techniques, such as toolglasses, marking menus, and bi-manual interaction. Feedback facilities provide contextual error messages and indicate dependency relationships between net elements. The tool features incremental syntax checking and code generation which take place while a net is being constructed. A fast simulator efficiently handles both untimed and timed nets. Full and partial state spaces can be generated and analysed, and a standard state space report contains information such as boundedness properties and liveness properties. The functionality of the simulation engine and state space facilities are similar to the corresponding components in Design/CPN, which is a widespread tool for Coloured Petri Nets.
    corecore