115 research outputs found

    Clinical course and prognosis of the lymphoproliferative disease of granular lymphocytes. A multicenter study.

    Get PDF
    Lymphoproliferative disease of granular lymphocytes (LDGL) is a recently recognized, relatively rare atypical lymphocytosis characterized by the presence of over 2000 lymphocytes with cytoplasmic azurophilic granules/mm3 in the peripheral blood. The clinical course is heterogeneous, varying from spontaneous regression to progressive, malignant disease. As a consequence, clinical intervention is not standardized. In a worldwide multicenter study, the authors observed 151 patients with LDGL for a mean follow-up time of 29 months. Forty-three patients were asymptomatic at the time of diagnosis. In the remaining cases, clinical symptoms included fever (41 cases), infections (58), neutropenia (47), anemia (17), and thrombocytopenia (12). In 69 cases, LDGL coexisted with an associated disease. Most patients had a nonprogressive clinical course despite the presence of severe symptoms. In 19 patients, death related to LDGL occurred within 48 months. The authors investigated which features at diagnosis were significantly associated with increased mortality. In the univariate analysis, lymph node and liver enlargement, fever at presentation, skin infiltration, a low (less than or equal to 5000/mm3) or high (greater than 20,000/mm3) peripheral leukocyte count, relatively low (less than or equal to 3000) or high (greater than 7000/mm3) absolute peripheral granular lymphocyte (GL) count, and a low (less than or equal to 15%) percentage of HNK-1-positive cells were found to be predictors of increased mortality. In the multivariate analysis, significant independent predictors were fever at diagnosis, a low (less than or equal to 15%) percentage of HNK-1-positive peripheral blood mononuclear cells (PBMC) and a relatively low (less than or equal to 3000) GL count. These results showed that about 25% of the patients with LDGL were diagnosed after a routine blood count and had no clinical symptoms. The remaining patients were symptomatic, with some experiencing a fatal clinical course. The author's analysis of the significant prognostic features of LDGL may help in understanding the heterogeneous nature of this syndrom

    D-Penicillamine Metabolism in an In-Vivo Model of Inflamed Synovium

    Get PDF
    Oxidation to disulphides is the chief metabolic transformation of D-penicillamine (D-pen) in patients with rheumatoid arthritis. Oxidation also occurs in many biological fluids in-vitro. Reduction of oxygen species may accompany the oxidation of D-pen under appropriate conditions and may mediate the anti-rheumatic action of D-pen. The transformation of D-pen therefore was examined in an in-vivo model of inflamed synovium. Subcutaneous air-pouches of groups of rats were treated with saline, 10% serum or 10% zymosan activated serum (ZAS). The transformation of D-pen to low molecular weight (LMW) metabolites and protein conjugates within the pouch was then assessed. The concentrations of total protein were significantly higher in the serum and ZAS-treated groups than in the saline-treated group and the inflammatory cell counts were significantly higher in the ZAS-treated group than in either of the other groups, as expected. D-pen oxidised rapidly to LMW metabolites and smaller amounts of D-pen-protein conjugate (D-pen-protein) in the air pouches of all animals. The rates of oxidation to LMW metabolites were greater in the ZAS-treated animals than the saline-treated group (p less than 0.005). The concentrations of D-pen-protein conjugate were also greater for the serum-treated and ZAS-treated animals than for the saline controls (p less than 0.005 in each case) at all times. Oxidation of D-pen therefore occurs at this site of inflammation and is influenced by local conditions. This may be important to understanding the forms in which D-pen exists in inflamed synovial joints and the way it may exert its antirheumatic activity

    Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.

    No full text
    • …
    corecore